Perspectives in Hadron Physics ICISE, Quy Nhon, Vietnam September 22-28, 2019 Booklet of Abstracts

Total Page:16

File Type:pdf, Size:1020Kb

Perspectives in Hadron Physics ICISE, Quy Nhon, Vietnam September 22-28, 2019 Booklet of Abstracts 15th Rencontres du Vietnam Perspectives in Hadron Physics ICISE, Quy Nhon, Vietnam September 22-28, 2019 Booklet of abstracts Version of September 13, 2019 1 1 Kaonic hydrogen and deuterium from SIDDHARTA Claude AMSLER Stefan Meyer Institute for Subatomic Physics, Vienna [email protected] Data on the KN interaction very close to threshold (e.g., from kaonic atoms) pro- vides information on the interplay between spontaneous and explicit chiral symmetry breaking in low energy QCD. Kaonic hydrogen was investigated with unprecedented precision by the SIDDHARTA experiment at the DAφNE electron-positron collider of LNF (Frascati), which delivers very low energy charged kaons from the decay of the φ resonance. The strong interaction shift and broadening of the ground state were mea- − sured, from which the s-wave K p scattering length a = 1=2(a0+a1) was derived, where a0 (a1) are the two isoscalar (isovector) components. To determine the two contributions separately, measurements of the shift and width of the 1s kaonic deuterium atom are re- quired. This is one of the most important missing information on the low-energy KN interaction. The approved experiment SIDDHARTA-2 at LNF intends to measure the transition X-rays to the ground state of kaonic deuterium. Challenging are the very small X-ray yields, the even larger widths compared to hydrogen, and the high radiation environ- ment. Data are not available so far (apart from an exploratory experiment performed at DAφNE in 2013). We are developing large area X-ray detectors by optimizing the signal-over-noise ratio, improving on the timing capability and implementing charge particle tracking and veto devices. Installation of the SIDDHARTA-2 apparatus has started in spring 2019. A data-taking period of about 6 months is planned in 2020. An integrated luminosity of 800 pb−1 is required to reach the goals of 30 eV uncertainty on the 1s level shift and 75 eV on its width. The final results of SIDDHARTA on kaonic hydrogen will be summarized. The physics impact of the kaonic deuterium project will be discussed, and the current status of SIDDHARTA-2 presented. 2 Decoding the phase structure of QCD with high energy nuclear collisions Peter BRAUN-MUNZINGER EMMI/GSI Darmstadt [email protected] In this talk we demonstrate that the phase structure of strongly interacting matter can be decoded via analysis of particle production in high energy nuclear collisions. This is achieved by making use of the observed thermalization pattern of particle abun- dances within the framework of the statistical hadronization approach at various colli- sion energies. The thermalization holds not only for hadronic constituents composed of 1 light quarks but also for light, loosely bound nuclei. The observed energy dependence of the production yields and fluctuations of different particle species contains charac- teristic features which are used to determine the temperature and baryo-chemical po- tential of the matter produced. Furthermore, we demonstrate how charm quarks can be included into the analysis . This can be used to provide information on the degree of deconfinement in the fireball. The above observations imply quark-hadron duality at the QCD phase boundary and establish the first experimental delineation of the location of the phase change in strongly interacting matter. New experimental opportunities for relativistic nuclear collisions are pointed out for the near and longer term future. 3 Structure of the charmed baryons through an electro- magnetic perspective Kadir-Utku CAN RIKEN, Japan [email protected] In this talk, we investigate the electromagnetic properties of the charmed baryons with a focus on our lattice QCD calculations. By comparing the different sectors, such as the spin-1/2 baryons to the spin-3/2 ones or the singly charmed to the doubly charmed baryons, we reveal the inner dynamics and the characteristics of the charmed baryons. We comment on the tension between our lattice determinations and the results obtained via other methods, and discuss the possible reasons. 4 Recent Results from GlueX Mark DALTON Jefferson Lab (For the GlueX Collaboration) [email protected] The GlueX Experiment at Jefferson Lab uses a 9 GeV linearly polarized photon beam incident on a liquid hydrogen target and a solenoidal spectrometer providing nearly complete coverage for charged and neutral particles. GlueX has completed phase 1 of data taking having acquired many orders of magnitude more photo-production data than previously available. The ultimate goal is to search for and map the spectrum of light hybrid mesons. Towards this goal, polarization observables, spin density matrix elements (SDMEs), and cross-sections of mesons are being measured in order to un- derstand their production mechanisms. This talk will discuss the recent results from GlueX. 2 5 Nucleon spin structure from large to small distances Alexandre DEUR Jefferson Lab [email protected] We will summarize the measurements investigating the nucleon longitudinal spin structure. After motivating its study, we will discuss the recent experimental data, in particular that at large distance, and what they teach us. The experimental data have now provided a precise mapping of the nucleon longitudinal spin structure from large to small distances. This achievement went in hand with important theoretical advances such as improvements in Chiral Perturbation Theory, the perspective for lattice QCD to compute structure functions, or the application of Light–Front Holographic QCD to the nucleon spin structure. 6 Hadron structure results from COMPASS and plans for AMBER Celso FRANCO LIP-Lisbon, Portugal [email protected] The COMPASS experiment at CERN is one of the leading experiments studying the proton structure. In what concerns the spin and momentum dependence of the par- ton distribution functions COMPASS has been performing several measurements, since 2002, using the following processes: deep inelastic scattering of polarised muons off lon- gitudinally and transversely polarised NH3 and 6LiD targets and also the pion-induced Drell-Yan reaction in a transversely polarised NH3 target. An overview of the COM- PASS results on this topic will be presented. A proposal for a new CERN experiment on hadron structure and spectroscopy with extended scientific scope with respect to COM- PASS, the AMBER project, will also be discussed. Namely, the planned measurements on the pion and kaon structure will be presented. 7 On non-conformal models for bottom-up holographic QCD Anastasia GOLUBTSOVA Joint Institute for Nuclear Research [email protected] Recent years holographic duality has been tremendously successful in giving deep insights into strongly coupled QCD, in particular physics of quark-gluon plasma. In 3 this talk I will focus on the bottom-up models that can implement holographically the renormalization group flow of QCD at zero and finite temperatures. These models can be studied analytically while having features resembling the real QCD, in particular reproducing the QCD running coupling. I will consider estimations for heavy quark potential and drag force of a moving quark in the holographic backgrounds. The gen- eralization of the models to the case of finite baryonic density will be also discussed. 8 Light-meson spectroscopy at COMPASS Boris GRUBE Technische Universiät München [email protected] The excitation spectrum of light mesons, which are composed of up, down, and strange quarks, is studied since decades. However, it still holds a number of puzzles and surprises that provide new insights into the nature of the strong interaction. Recent high-quality data samples from the COMPASS experiment at CERN allow us to not only study the properties of established mesons with unprecedented precision but to also search for new states. These searches in particular aim to resolve the question of the existence of so-called exotic states, such as four-quark states or states with excited gluon fields. Since light mesons have often large widths and are overlapping, the mapping of their spectrum is challenging and requires large quantities of data. The data are analyzed using a framework of interfering quantum amplitudes known as partial-wave analysis (PWA). Most excited meson states decay into multi-particle final states, for which the PWA requires extensive modeling of the dynamics of the final-state hadrons. In this talk, I will give an overview of the ongoing experimental studies of light mesons at COMPASS. I will also touch on novel analysis techniques and the prospects for future progress. 9 Five–body structure of ssscc¯ system Emiko HIYAMA Kyushu Univ./RIKEN [email protected] We introduce the structure of ssscc¯ system which has never been observed, within the framework of the constituent quark model. Then, we will discuss whether or not we have compact sharp resonant states which are genuine pentaquark systems. 4 10 Pc as heavy hadronic molecules with pion exchange force Atsushi HOSAKA RCNP, Osaka University [email protected] We study recently observed Pcas hadronic molecules, presenting how a simple model with pion exchange force can describe the LHCb data for masses and widths. The role of the tensor force is analyzed, and we discuss its importance in the formation of the molecules. 11 Status of Λ(1405) in chiral dynamics Tetsuo HYODO Tokyo Metropolitan University [email protected] We introduce the current status of the Lambda(1405) resonance in chiral SU(3) dy- namics. Whole set of low-energy experimental data around the K−p threshold, includ- ing the recent precise measurement of the kaonic hydrogen, can be described in the framework of the NLO chiral SU(3) dynamics. We show the determination of the pole structure in the Λ(1405)region, and then discuss the internal structure of the Λ(1405). 12 Study of KN¯ interaction from the hadron-hadron cor- relation in high-energy nuclear collisions Yuki KAMIYA Institute of Theoretical Physics, Beijing [email protected] We discuss the KN¯ correlation in high-energy nuclear collisions and its relation to the KN¯ interaction.
Recommended publications
  • P. Gubler and K
    Mesons with charm and strangeness in nuclear matter Philipp Gubler, JAEA P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014). P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015). P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016). A. Park, P. Gubler, M. Harada, S.H. Lee, C. Nonaka and W. Park, Phys. Rev. D 93, 054035 (2016). K. Suzuki, P. Gubler and M. Oka, Phys. Rev. C 93, 045209 (2016). Talk at “New Frontiers in QCD 2018” (NFQCD2018) YITP, Kyoto, Japan June 15, 2018 Introduction φ meson D mesons Introduction Spectral functions at finite density How is this complicated behavior related to the behavior of QCD condensates? modification at finite density mass/thresholdbroadening?coupling to nucleon shifts? resonances? Recent theoretical works about the φ based on hadronic models P N N P Forward KN (or KN) scattering amplitude P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015). P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016). Recent theoretical works about the φ based on hadronic models large dependence on details of the model incorporating Baryon - Vector meson interaction SU(6): Spin-Flavor Symmetry extension of standard flavor SU(3) HLS: Hidden Local Symmetry Common features: strong broadening, small negative mass shift See also: D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C 95, 015201 (2017). Phys. Rev. C 96, 034618 (2017). Recent theoretical works about the φ based on the quark-meson coupling model Some φA bound states might J.J.
    [Show full text]
  • Design and Construction of the BESIII Detector
    Design and Construction of the BESIII Detector M. Ablikim, Z.H. An, J.Z. Bai, Niklaus Berger, J.M. Bian, X. Cai, G.F. Cao, X.X. Cao, J.F. Chang, C. Chen, G. Chen, H.C. Chen, H.X. Chen, J. Chen, J.C. Chen, L.P. Chen, P. Chen. X.H. Chen, Y.B. Chen, M.L. Chen, Y.P. Chu,X.Z. Cui, H.L. Dai, Z.Y. Deng, M.Y. Dong, S.X. Du, Z.Z. Du, J. Fang, C.D. Fu, C.S. Gao, M.Y. Gong, W.X. Gong, S.D. Gu, B.J. Guan, J. Guan, Y.N. Guo, J.F. Han, K.L. He, M. He, X. He, Y.K. Heng, Z.L. Hou, H.M. Hu, T. Hu, B. Huang, J. Huang, S.K. Huang, Y.P. Huang, Q. Ji, X.B. Ji, X.L. Ji, L.K. Jia, L.L. Jiang, X.S. Jiang, D.P. Jin, S. Jin, Y. Jin, Y.F. Lai, G.K. Lei, F. Li, G. Li, H.B. Li, H.S. Li, J. Li, J. Li, J.C. Li, J.Q. Li, L. Li, L. Li, R.B. Li, R.Y. Li, W.D. Li, W.G. Li, X.N. Li, X.P. Li, X.R. Li, Y.R. Li, W. Li, D.X. Lin, B.J. Liu, C.X. Li u, F. Li u, G.M. Li u, H. Li u, H.M. Li u, H.W. Li u, J.B. Li u, L.F. Li u, Q. Li u, Q.G. Li u, S.D.
    [Show full text]
  • Strong Interaction Studies with Kaonic Atoms
    EPJ Web of Conferences 113, 03 009 (2016 ) DOI: 10.1051/epjconf/201611003 3 09 C Owned by the authors, published by EDP Sciences, 2016 Strong interaction studies with kaonic atoms J. Marton1,a, M. Bazzi2, G. Beer3, C. Berucci1,2, D. Bosnar11, A.M. Bragadireanu1,5, M. Cargnelli1, A. Clozza2, C. Curceanu2, A. d’Uffizi2, C. Fiorini4, F. Ghio6, C. Guaraldo2, R. Hayano7, M. Iliescu2, T. Ishiwatari1, M. Iwasaki8, P. Levi Sandri2, S. Okada8, D. Pietreanu2,5, K. Piscicchia2, T. Ponta5, R. Quaglia4, A. Romero Vidal10, E. Sbardella2, A. Scordo2, H. Shi2, D.L. Sirghi2,5, F. Sirghi2,5, H. Tatsuno12, O. Vazquez Doce9, E. Widmann1, and J. Zmeskal1 1Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien, Austria 2INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma), Italy 3Dep. of Physics and Astronomy, University of Victoria, P.O.Box 3055, Victoria B.C. Canada V8W3P6 4Politecnico di Milano, Dip. di Elettronica e Informazione, Piazza L. da Vinci 32, I-20133 Milano, Italy 5Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, Reactorului 30, Magurele, Romania 6INFN Sez. di Roma I and Instituto Superiore di Sanita I-00161, Roma, Italy 7University of Tokyo,7-3-1, Hongo, Bunkyo-ku,Tokyo, Japan 8RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan 9Excellence Cluster Universe, Tech. Univ. München, Boltzmannstraße 2, D-85748 Garching, Germany 10Universidade de Santiago de Compostela, Casas Reais 8, 15782 Santiago de Compostela, Spain 11Department of Physics, Faculty of Science, University of Zagreb, Croatia 12High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan Abstract.
    [Show full text]
  • Arxiv:2104.06076V2 [Nucl-Ex] 19 Apr 2021 Related to This field
    Fundamental physics at the strangeness frontier at DAΦNE. Outline of a proposal for future measurements. C. Curceanu, C. Guaraldo, A. Scordo, D. Sirghi, Laboratori Nazionali di Frascati INFN, Via E. Fermi 54, Frascati, Italy K. Piscicchia Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy C. Amsler, J. Zmeskal Stefan Meyer Institute of the Austrian Academy of Sciences (SMI), Wien, Austria D. Bosnar Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia S. Eidelman Budker Institute of Nuclear Physics (SB RAS), Novosibirsk and Lebedev Physical Institute (RAS), Moscow, Russia H. Ohnishi, Y. Sada Research Center for Electron Photon Science, Tohoku University, Sendai, Japan The DAΦNE collider at INFN-LNF is a unique source of low-energy kaons, which was used by the DEAR, SIDDHARTA and AMADEUS collaborations for unique measurements of kaonic atoms and kaon-nuclei interactions. Presently, the SIDDHARTA-2 collaboration is underway to measure the kaonic deuterium exotic atom. With this document we outline a proposal for fundamental physics at the strangeness frontier for future measurements of kaonic atoms and kaon-nuclei interactions at DAΦNE, which is intended to stimulate discussions within the broad scientific community performing research directly or indirectly arXiv:2104.06076v2 [nucl-ex] 19 Apr 2021 related to this field. PACS numbers: 13.75.Jz, 36.10.-k, 36.10.Gv, 14.40.-n, 25.80.Nv, 29.30.-h, 29.90.+r, 87.64.Gb, 07.85.Fv, 29.40.-n, 29.40.Gx, 29.40.Wk 1. Introduction The DAΦNE collider at INFN-LNF1,2 is a unique source of strangeness (kaons) in the world: it delivers low-momentum (< 140 MeV/c) nearly monochromatic charged kaons, generated by the decay of the φ resonance formed in electron-positron annihilation.
    [Show full text]
  • Hadron Physics at J-PARC Arxiv:1912.02380V2 [Nucl-Ex] 2 Mar
    Hadron Physics at J-PARC H. Ohnishi,1 F. Sakuma,2 T. Takahashi,3 1Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai 982-0826, Japan 2RIKEN Cluster for Pioneering Research (CPR), RIKEN, Wako 351-0198, Japan 3Institute of Particle and Nuclear Study (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan March 3, 2020 Abstract The aim of the hadron physics research programs conducted at J-PARC is to explore the structure of hadronic matter using the world's highest-intensity meson beams. Since the first beam was extracted at the hadron experimental facility (HEF) in February 2009, a wide variety of physics experiments have been proposed and performed to address open questions regarding quantum chromodynamics (QCD) at low energy. The high-intensity K− and high-momentum beams available at J-PARC open a new era in hadron and nuclear physics, in which strange and charm quarks play an important role. We review the programs focused on addressing the hadron structure as strongly interacting composite particles, the origin of hadron mass, and interactions between hadrons under broken flavor SU(3) symmetry. Contents 1 Introduction 2 arXiv:1912.02380v2 [nucl-ex] 2 Mar 2020 2 J-PARC Hadron Experimental Facility 4 2.1 Overview of J-PARC . .4 2.2 Overview of J-PARC . .4 2.3 Hadron Experimental Facility . .7 3 Experiments at the J-PARC HEF 8 3.1 QCD Vacuum and Hadron Structure . 10 3.1.1 Search for the Θ+ penta-quark baryon . 10 3.1.2 Search for the H dibaryon . 12 3.1.3 Detailed investigations of nucleon resonances .
    [Show full text]
  • Prospect of Particle Physics in China
    Outline Prospect of Particle Physics in China • Introduction • BEPC and its results • BEPCII • Non-Accelerator Physics Experiments Hesheng Chen • Medium and long term plan of particle physics in China. Institute of High Energy Physics Beijing 100049, China 2 1 Particle Physics in China Prof. Sanqiang Qian, • Chinese Nuclear physics and Particle physics researches the founder of Chinese have long tradition: – Zhongyao Zhao : discovery of Positron Nuclear Physics and – Ganchang Wang: neutrino search Particle Physics, was a – Sanqiang Qian and Zehui He: students of Curie student of Mr and – …… • Institute of Modern Physics established 1950. Madam Curie . He was • JINR Dubna: the director of the Inst. – Jointed 1956 of Modern Physics – Discovery of anti-Σ by the group led by Ganchang since March 1951. Wang – Withdraw 1965 • Chinese Government deided to use the money to build the Prof. Sanqiang Qian Chinese HEP center 4 2 Particle Physics in China Institute of High Energy Physics • Independent Institute for High Energy Physics: Feb. 1973 • OfOpen door after cultural revolut ion: sent phys iiicists to Comprehensive and largest fundamental research Mark-J @ DESY 1978 center in China • HE physicists worked at DESY,CERN and US Major research fields : • China –US HEP agreement – Particle physics: Charm physics @ BEPC, LHC exp., • Beijing Electron Positron Collider (BEPC): milestone . ν constructed 1984-1988 cosmic ray, particle astrophysics, physics … • Provide big scientific platforms: – Accelerator technology and applications – Synchrotron Radiation Light Sources: – Synchrotron radiation technologies and applications • Beijing synchrotron radiation facility (2.5GeV) 1030 emppyloyees, ~ 670 p pyhysicists and eng ineers, • Hefei national synchrotron radiation light source (800MeV) 400 PhD Students and postdoctors • Shanghai Light source(3.5GeV, underconstruction) – Chinese Spallation Neutron Source 3 Particle physics experiment group Particle Physics Experiments in China • Univ.
    [Show full text]
  • Relativistic Calculations of Pionic and Kaonic Atoms Hyperfine Structure Martino Trassinelli, Paul Indelicato
    Relativistic calculations of pionic and kaonic atoms hyperfine structure Martino Trassinelli, Paul Indelicato To cite this version: Martino Trassinelli, Paul Indelicato. Relativistic calculations of pionic and kaonic atoms hyperfine structure. 2007. hal-00116718v2 HAL Id: hal-00116718 https://hal.archives-ouvertes.fr/hal-00116718v2 Preprint submitted on 20 Feb 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Relativistic calculations of pionic and kaonic atoms hyperfine structure Martino Trassinelli1,2, ∗ and Paul Indelicato2, † 1Gesellschaft f¨ur Schwerionenforschung, Darmstadt, Germany 2Laboratoire Kastler Brossel, Ecole´ Normale Sup´erieure; CNRS; Universit´ePierre et Marie Curie-Paris 6, Paris, France (Dated: February 20, 2007) We present the relativistic calculation of the hyperfine structure in pionic and kaonic atoms. A perturbation method has been applied to the Klein-Gordon equation to take into account the relativistic corrections. The perturbation operator has been obtained via a multipole expansion of the nuclear electromagnetic potential. The hyperfine structure of pionic and kaonic atoms provide an additional term in the quantum electrodynamics calculation of the energy transition of these systems. Such a correction is required for a recent measurement of the pion mass. PACS numbers: 03.65.Pm, 31.15.-p, 31.15.Md, 32.30.Rj, 36.10.Gv I.
    [Show full text]
  • Doubly Charmed Tetraquarks in a Diquark-Antidiquark Model
    Doubly charmed tetraquarks in a diquark-antidiquark model Xiaojun Yan, Bin Zhong and Ruilin Zhu ∗ Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China We study the spectra of the doubly charmed tetraquark states in a diquark-antidiquark model. The doubly charmed tetraquark states form an antitriplet and a sextet configurations according to flavor SU(3) symmetry. For the tetraquark state [qq0][¯cc¯], we show the mass for both bound and excited states. The two-body decays of tetraquark states T cc[0+] and T cc[1−−] to charmed mesons have also been studied. In the end,the doubly charmed tetraquarks decays to a charmed baryon and a light baryon have been studied in the SU(3) flavor symmetry. Keywords: Exotic states, tetraquark, diquark I. INTRODUCTION may give an interpretation to such XYZ states [44]. A tetraquark state can also be represented with four quark configuration [qq0][¯cc¯](two charm antiquarksc ¯'s and two Since last decade, Belle, BABAR, BESIII, LHCb and light quarks with up, down and strange quarks u, d and other experimental data have indicated a considerable s), which is called as doubly charmed (C=2) tetraquark number of exotic hadronic resonances with charm or T cc. From a theoretical point of view, T cc may be a more beauty, the so-called XYZ and Pc particles including interesting hadronic state because the two heavy charm tetraquark states and pentaquark states [1{17]. All of quark are more likely to form a lower energy diquark these exotic states have many unexpected properties, and two light quarks will rotate round the charmed di- such as masses, decay widths and cross-sections, which quark.
    [Show full text]
  • Kaonic Atoms to Investigate Global Symmetry Breaking
    Kaonic Atoms to Investigate Global Symmetry Breaking Curceanu, Catalina; Guaraldo, Carlo; Sirghi, Diana; Amirkhani, Aidin; Baniahmad, Ata; Bazzi, Massimiliano; Bellotti, Giovanni; Bosnar, Damir; Bragadireanu, Mario; Cargnelli, Michael; ... Source / Izvornik: Symmetry, 2020, 12 Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF) https://doi.org/10.3390/sym12040547 Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:964413 Rights / Prava: Attribution 4.0 International Download date / Datum preuzimanja: 2021-09-27 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb S S symmetry Article Kaonic Atoms to Investigate Global Symmetry Breaking Catalina Curceanu 1 , Carlo Guaraldo 1 , Diana Sirghi 1,2,*, Aidin Amirkhani 3, Ata Baniahmad 3 , Massimiliano Bazzi 1, Giovanni Bellotti 3, Damir Bosnar 4 , Mario Bragadireanu 2, Michael Cargnelli 5, Marco Carminati 3, Alberto Clozza 1, Luca De Paolis 1, Raffaele Del Grande 1,6, Carlo Fiorini 3, Mihail Iliescu 1, Masahiko Iwasaki 7, Pietro King 3, Paolo Levi Sandri 1, Johann Marton 5, Marco Miliucci 1 , Paweł Moskal 8, Szymon Nied´zwiecki 8 , Shinji Okada 7, Kristian Piscicchia 1,6, Alessandro Scordo 1 , Michał Silarski 8 , Florin Sirghi 1,2, Magdalena Skurzok 1,8, Antonio Spallone 1, Marlene Tüchler 5, Gianlorenzo Utica 3, Oton Vazquez Doce 1,9 and Johann Zmeskal 5 1 INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Roma, Italy; [email protected] (C.C.); [email protected] (C.G.); [email protected]
    [Show full text]
  • Disentangling the Kaonic-Hydrogen Kfβ-Complex with DEAR
    IL NUOVO CIMENTOVOL. 110 A, N. 11 Novembre 1997 Disentangling the kaonic-hydrogen KFb-complex with DEAR 1 1 2 1 2 C. GUARALDO ( ), M. BRAGADIREANU ( )( ), M. ILIESCU ( )( ) 1 1 2 2 V. LUCHERINI ( ), C. PETRASCU ( )( ) and T. PONTA ( ) (1) INFN, Laboratori Nazionali di Frascati - C.P. 13, I-00044 Frascati (Roma), Italy (2) IFIN-HH - Bucharest-Magurele, P.O. Box MG6, R-76900 Romania (ricevuto il 12 Settembre 1997; approvato l’8 Ottobre 1997) Summary. — The possibility of disentangling for the first time the KFb-complex in kaonic hydrogen is shown to be realistic with the DEAR experiment. A precise identification of the pattern of lines in kaonic hydrogen and in kaonic deuterium can allow to obtain the first experimental determination of the KN sigma terms. PACS 13.75.Jz – Kaon-baryon interactions. PACS 36.10 – Exotic atoms and molecules (containing mesons, muons, and other unusual particles). 1. – Kaonic-hydrogen formation and energy levels An “exotic atom” is formed whenever an electron of an outer orbit of an atom is replaced by a heavier charged particle, such as a muon (m 2), or hadrons like a pion (p 2 ), a kaon (K2 ), an antiproton (p) or a sigma hyperon (S2 ). Among the exotic atoms, the hydrogen-like systems are of particular importance, because they have the simplest structure and are free from any screening effect due to bound electrons. By studying them, one can, for instance, directly probe the hadron-nucleon interaction at zero energy. The case of kaonic hydrogen. The mechanism of formation of a kaonic hydrogen atom is the following: a negative kaon enters into a hydrogen target; it loses its kinetic energy by ionization and excitation of the hydrogen molecules until it is captured into an atomic orbit around the proton (by replacing the electron).
    [Show full text]
  • Kaonic Atoms Experiment at the DAΦNE Collider by SIDDHARTA/SIDDHARTA-2
    SciPost Physics Proceedings Submission Kaonic atoms experiment at the DAΦNE collider by SIDDHARTA/SIDDHARTA-2 M. Skurzok1,2, A. Amirkhani3, A. Baniahmad3, M. Bazzi1, D. Bosnar4, M. Bragadireanu5, M. Carminati3, M. Cargnelli6, A. Clozza1, C. Curceanu1, L. De Paolis1, R. Del Grande1,7, L. Fabbietti8, C. Fiorini3, C. Guaraldo1, M. Iliescu1, M. Iwasaki9, P.Levi Sandri1, J. Marton6, M. Miliucci1, P.Moskal2, S. Nied´zwiecki 2, S. Okada9, D. Pietreanu1,5, K. Piscicchia7,1, A. Scordo1, M. Silarski2, D. Sirghi1,5, F. Sirghi1,5, A. Spallone1, M. Tüchler 6, O. Vazquez Doce1,8, E. Widmann6 and J. Zmeskal6 1 INFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy 2 The M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland 3 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria and INFN Sezione di Milano, Milano, Italy 4 Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia 5 Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania 6 Stefan-Meyer-Institut für Subatomare Physik, Vienna, Austria 7 CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy 8 Excellence Cluster Universe, Technische Universiät München, Garching, Germany 9 RIKEN, Tokyo, Japan ? [email protected] November 25, 2019 Proceedings for the 24th edition of European Few Body Conference, Surrey, UK, 2-4 September 2019 Abstract The excellent quality kaon beam provided by the DAΦNE collider of LNF-INFN (Italy) together with SIDDHARTA/SIDDHARTA-2 new experimental techniques, as very precise and fast-response X-ray detectors, allow to perform unprecedented measurements on light kaonic atoms crucial for a deeper understanding of the low-energy quantum chro- modynamics (QCD) in the strangeness sector.
    [Show full text]
  • Kaonic Atoms Experiment at the DAΦNE Collider by SIDDHARTA/SIDDHARTA-2
    SciPost Phys. Proc. 3, 039 (2020) Kaonic atoms experiment at the DAΦNE collider by SIDDHARTA/SIDDHARTA-2 M. Skurzok1,2?, A. Amirkhani3, A. Baniahmad3, M. Bazzi1, D. Bosnar4, M. Bragadireanu5, M. Carminati3, M. Cargnelli6, A. Clozza1, C. Curceanu1, L. De Paolis1, R. Del Grande1,7, L. Fabbietti8, C. Fiorini3, C. Guaraldo1, M. Iliescu1, M. Iwasaki9, P.Levi Sandri1, J. Marton6, M. Miliucci1, P.Moskal2, S. Nied´zwiecki 2, S. Okada9, D. Pietreanu1,5, K. Piscicchia7,1, A. Scordo1, M. Silarski2, D. Sirghi1,5, F. Sirghi1,5, A. Spallone1, M. Tüchler 6, O. Vazquez Doce1,8, E. Widmann6 and J. Zmeskal6 1 INFN, Laboratori Nazionali di Frascati, Frascati (Roma), Italy 2 The M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland 3 Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria and INFN Sezione di Milano, Milano, Italy 4 Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia 5 Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Magurele, Romania 6 Stefan-Meyer-Institut für Subatomare Physik, Vienna, Austria 7 CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Roma, Italy 8 Excellence Cluster Universe, Technische Universiät München, Garching, Germany 9 RIKEN, Tokyo, Japan ? [email protected] Proceedings for the 24th edition of European Few Body Conference, Surrey, UK, 2-6 September 2019 doi:10.21468/SciPostPhysProc.3 Abstract The excellent quality kaon beam provided by the DAΦNE collider of LNF-INFN (Italy) together with SIDDHARTA/SIDDHARTA-2 new experimental techniques, as very precise and fast-response X-ray detectors, allow to perform unprecedented measurements on light kaonic atoms crucial for a deeper understanding of the low-energy quantum chro- modynamics (QCD) in the strangeness sector.
    [Show full text]