Verbnet Representations: Subevent Semantics for Transfer Verbs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Artificial Neural Network Approach for Sentence Boundary Disambiguation in Urdu Language Text
The International Arab Journal of Information Technology, Vol. 12, No. 4, July 2015 395 An Artificial Neural Network Approach for Sentence Boundary Disambiguation in Urdu Language Text Shazia Raj, Zobia Rehman, Sonia Rauf, Rehana Siddique, and Waqas Anwar Department of Computer Science, COMSATS Institute of Information Technology, Pakistan Abstract: Sentence boundary identification is an important step for text processing tasks, e.g., machine translation, POS tagging, text summarization etc., in this paper, we present an approach comprising of Feed Forward Neural Network (FFNN) along with part of speech information of the words in a corpus. Proposed adaptive system has been tested after training it with varying sizes of data and threshold values. The best results, our system produced are 93.05% precision, 99.53% recall and 96.18% f-measure. Keywords: Sentence boundary identification, feed forwardneural network, back propagation learning algorithm. Received April 22, 2013; accepted September 19, 2013; published online August 17, 2014 1. Introduction In such conditions it would be difficult for a machine to differentiate sentence terminators from Sentence boundary disambiguation is a problem in natural language processing that decides about the ambiguous punctuations. beginning and end of a sentence. Almost all language Urdu language processing is in infancy stage and processing applications need their input text split into application development for it is way slower for sentences for certain reasons. Sentence boundary number of reasons. One of these reasons is lack of detection is a difficult task as very often ambiguous Urdu text corpus, either tagged or untagged. However, punctuation marks are used in the text. -
An Arabic Wordnet with Ontologically Clean Content
Applied Ontology (2021) IOS Press The Arabic Ontology – An Arabic Wordnet with Ontologically Clean Content Mustafa Jarrar Birzeit University, Palestine [email protected] Abstract. We present a formal Arabic wordnet built on the basis of a carefully designed ontology hereby referred to as the Arabic Ontology. The ontology provides a formal representation of the concepts that the Arabic terms convey, and its content was built with ontological analysis in mind, and benchmarked to scientific advances and rigorous knowledge sources as much as this is possible, rather than to only speakers’ beliefs as lexicons typically are. A comprehensive evaluation was conducted thereby demonstrating that the current version of the top-levels of the ontology can top the majority of the Arabic meanings. The ontology consists currently of about 1,300 well-investigated concepts in addition to 11,000 concepts that are partially validated. The ontology is accessible and searchable through a lexicographic search engine (http://ontology.birzeit.edu) that also includes about 150 Arabic-multilingual lexicons, and which are being mapped and enriched using the ontology. The ontology is fully mapped with Princeton WordNet, Wikidata, and other resources. Keywords. Linguistic Ontology, WordNet, Arabic Wordnet, Lexicon, Lexical Semantics, Arabic Natural Language Processing Accepted by: 1. Introduction The importance of linguistic ontologies and wordnets is increasing in many application areas, such as multilingual big data (Oana et al., 2012; Ceravolo, 2018), information retrieval (Abderrahim et al., 2013), question-answering and NLP-based applications (Shinde et al., 2012), data integration (Castanier et al., 2012; Jarrar et al., 2011), multilingual web (McCrae et al., 2011; Jarrar, 2006), among others. -
A Comparison of Knowledge Extraction Tools for the Semantic Web
A Comparison of Knowledge Extraction Tools for the Semantic Web Aldo Gangemi1;2 1 LIPN, Universit´eParis13-CNRS-SorbonneCit´e,France 2 STLab, ISTC-CNR, Rome, Italy. Abstract. In the last years, basic NLP tasks: NER, WSD, relation ex- traction, etc. have been configured for Semantic Web tasks including on- tology learning, linked data population, entity resolution, NL querying to linked data, etc. Some assessment of the state of art of existing Knowl- edge Extraction (KE) tools when applied to the Semantic Web is then desirable. In this paper we describe a landscape analysis of several tools, either conceived specifically for KE on the Semantic Web, or adaptable to it, or even acting as aggregators of extracted data from other tools. Our aim is to assess the currently available capabilities against a rich palette of ontology design constructs, focusing specifically on the actual semantic reusability of KE output. 1 Introduction We present a landscape analysis of the current tools for Knowledge Extraction from text (KE), when applied on the Semantic Web (SW). Knowledge Extraction from text has become a key semantic technology, and has become key to the Semantic Web as well (see. e.g. [31]). Indeed, interest in ontology learning is not new (see e.g. [23], which dates back to 2001, and [10]), and an advanced tool like Text2Onto [11] was set up already in 2005. However, interest in KE was initially limited in the SW community, which preferred to concentrate on manual design of ontologies as a seal of quality. Things started changing after the linked data bootstrapping provided by DB- pedia [22], and the consequent need for substantial population of knowledge bases, schema induction from data, natural language access to structured data, and in general all applications that make joint exploitation of structured and unstructured content. -
ACL 2019 Social Media Mining for Health Applications (#SMM4H)
ACL 2019 Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task Proceedings of the Fourth Workshop August 2, 2019 Florence, Italy c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-46-8 ii Preface Welcome to the 4th Social Media Mining for Health Applications Workshop and Shared Task - #SMM4H 2019. The total number of users of social media continues to grow worldwide, resulting in the generation of vast amounts of data. Popular social networking sites such as Facebook, Twitter and Instagram dominate this sphere. According to estimates, 500 million tweets and 4.3 billion Facebook messages are posted every day 1. The latest Pew Research Report 2, nearly half of adults worldwide and two- thirds of all American adults (65%) use social networking. The report states that of the total users, 26% have discussed health information, and, of those, 30% changed behavior based on this information and 42% discussed current medical conditions. Advances in automated data processing, machine learning and NLP present the possibility of utilizing this massive data source for biomedical and public health applications, if researchers address the methodological challenges unique to this media. In its fourth iteration, the #SMM4H workshop takes place in Florence, Italy, on August 2, 2019, and is co-located with the -
Verbnet Based Citation Sentiment Class Assignment Using Machine Learning
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 11, No. 9, 2020 VerbNet based Citation Sentiment Class Assignment using Machine Learning Zainab Amjad1, Imran Ihsan2 Department of Creative Technologies Air University, Islamabad, Pakistan Abstract—Citations are used to establish a link between time-consuming and complicated. To resolve this issue there articles. This intent has changed over the years, and citations are exists many researchers [7]–[9] who deal with the sentiment now being used as a criterion for evaluating the research work or analysis of citation sentences to improve bibliometric the author and has become one of the most important criteria for measures. Such applications can help scholars in the period of granting rewards or incentives. As a result, many unethical research to identify the problems with the present approaches, activities related to the use of citations have emerged. That is why unaddressed issues, and the present research gaps [10]. content-based citation sentiment analysis techniques are developed on the hypothesis that all citations are not equal. There are two existing approaches for Citation Sentiment There are several pieces of research to find the sentiment of a Analysis: Qualitative and Quantitative [7]. Quantitative citation, however, only a handful of techniques that have used approaches consider that all citations are equally important citation sentences for this purpose. In this research, we have while qualitative approaches believe that all citations are not proposed a verb-oriented citation sentiment classification for equally important [9]. The quantitative approach uses citation researchers by semantically analyzing verbs within a citation text count to rank a research paper [8] while the qualitative using VerbNet Ontology, natural language processing & four approach analyzes the nature of citation [10]. -
Full-Text Processing: Improving a Practical NLP System Based on Surface Information Within the Context
Full-text processing: improving a practical NLP system based on surface information within the context Tetsuya Nasukawa. IBM Research Tokyo Resem~hLaborat0ry t623-14, Shimotsurum~, Yimmt;0¢sl{i; I<almgawa<kbn 2421,, J aimn • nasukawa@t,rl:, vnet;::ibm icbm Abstract text. Without constructing a i):recige filodel of the eohtext through, deep sema~nfiCamtlys~is, our frmne= Rich information fl)r resolving ambigui- "work-refers .to a set(ff:parsed trees. (.r~sltlt~ 9 f syn- ties m sentence ~malysis~ including vari- : tacti(" miaiysis)ofeach sexitencd in t.li~;~i'ext as (:on- ous context-dependent 1)rol)lems. can be ob- text ilfformation, Thus. our context model consists tained by analyzing a simple set of parsed of parse(f trees that are obtained 1)y using mi exlst- ~rces of each senten('e in a text withom il!g g¢lwral syntactic parser. Excel)t for information constructing a predse model of the contex~ ()It the sequence of senl;,en('es, olIr framework does nol tl(rough deep senmntic.anMysis. Th.us. pro- consider any discourse stru(:~:ure mwh as the discourse cessmg• ,!,' a gloup" of sentem' .., '~,'(s togethel. i ': makes.' • " segmenm, focus space stack, or dominant hierarclty it.,p.(,)ss{t?!e .t.9 !~npl:ovel-t]le ~ccui'a~'Y (?f a :: :.it~.(.fi.ii~idin:.(cfi.0szufid, Sht/!er, dgs6)i.Tli6refbi.e, om< ,,~ ~-. ~t.ehi- - ....t sii~ 1 "~g;. ;, ~-ni~chin¢''ti-mslat{b~t'@~--..: .;- . .? • . : ...... - ~,',". ..........;-.preaches ":........... 'to-context pr0cessmg,,' • and.m" "tier-ran : ' le d at. •tern ; ::'Li:In i. thin.j.;'P'..p) a (r ~;.!iwe : .%d,es(tib~, ..i-!: .... -
Natural Language Processing
Chowdhury, G. (2003) Natural language processing. Annual Review of Information Science and Technology, 37. pp. 51-89. ISSN 0066-4200 http://eprints.cdlr.strath.ac.uk/2611/ This is an author-produced version of a paper published in The Annual Review of Information Science and Technology ISSN 0066-4200 . This version has been peer-reviewed, but does not include the final publisher proof corrections, published layout, or pagination. Strathprints is designed to allow users to access the research output of the University of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in Strathprints to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profitmaking activities or any commercial gain. You may freely distribute the url (http://eprints.cdlr.strath.ac.uk) of the Strathprints website. Any correspondence concerning this service should be sent to The Strathprints Administrator: [email protected] Natural Language Processing Gobinda G. Chowdhury Dept. of Computer and Information Sciences University of Strathclyde, Glasgow G1 1XH, UK e-mail: [email protected] Introduction Natural Language Processing (NLP) is an area of research and application that explores how computers can be used to understand and manipulate natural language text or speech to do useful things. NLP researchers aim to gather knowledge on how human beings understand and use language so that appropriate tools and techniques can be developed to make computer systems understand and manipulate natural languages to perform the desired tasks. -
Towards a Cross-Linguistic Verbnet-Style Lexicon for Brazilian Portuguese
Towards a cross-linguistic VerbNet-style lexicon for Brazilian Portuguese Carolina Scarton, Sandra Alu´ısio Center of Computational Linguistics (NILC), University of Sao˜ Paulo Av. Trabalhador Sao-Carlense,˜ 400. 13560-970 Sao˜ Carlos/SP, Brazil [email protected], [email protected] Abstract This paper presents preliminary results of the Brazilian Portuguese Verbnet (VerbNet.Br). This resource is being built by using other existing Computational Lexical Resources via a semi-automatic method. We identified, automatically, 5688 verbs as candidate members of VerbNet.Br, which are distributed in 257 classes inherited from VerbNet. These preliminary results give us some directions of future work and, since the results were automatically generated, a manual revision of the complete resource is highly desirable. 1. Introduction the verb to load. To fulfill this gap, VerbNet has mappings The task of building Computational Lexical Resources to WordNet, which has deeper semantic relations. (CLRs) and making them publicly available is one of Brazilian Portuguese language lacks CLRs. There are some the most important tasks of Natural Language Processing initiatives like WordNet.Br (Dias da Silva et al., 2008), that (NLP) area. CLRs are used in many other applications is based on and aligned to WordNet. This resource is the in NLP, such as automatic summarization, machine trans- most complete for Brazilian Portuguese language. How- lation and opinion mining. Specially, CLRs that treat the ever, only the verb database is in an advanced stage (it syntactic and semantic behaviour of verbs are very impor- is finished, but without manual validation), currently con- tant to the tasks of information retrieval (Croch and King, sisting of 5,860 verbs in 3,713 synsets. -
Entity Extraction: from Unstructured Text to Dbpedia RDF Triples Exner
Entity extraction: From unstructured text to DBpedia RDF triples Exner, Peter; Nugues, Pierre Published in: Proceedings of the Web of Linked Entities Workshop in conjuction with the 11th International Semantic Web Conference (ISWC 2012) 2012 Link to publication Citation for published version (APA): Exner, P., & Nugues, P. (2012). Entity extraction: From unstructured text to DBpedia RDF triples. In Proceedings of the Web of Linked Entities Workshop in conjuction with the 11th International Semantic Web Conference (ISWC 2012) (pp. 58-69). CEUR. http://ceur-ws.org/Vol-906/paper7.pdf Total number of authors: 2 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Entity Extraction: From Unstructured Text to DBpedia RDF Triples Peter Exner and Pierre Nugues Department of Computer science Lund University [email protected] [email protected] Abstract. -
Mining Text Data
Mining Text Data Charu C. Aggarwal • ChengXiang Zhai Editors Mining Text Data Editors Charu C. Aggarwal ChengXiang Zhai IBM T.J. Watson Research Center University of Illinois at Urbana-Champaign Yorktown Heights, NY, USA Urbana, IL, USA [email protected] [email protected] ISBN 978-1-4614-3222-7 e-ISBN 978-1-4614-3223-4 DOI 10.1007/978-1-4614-3223-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2012930923 © Springer Science+Business Media, LLC 2012 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Contents 1 An Introduction to Text Mining 1 Charu C. Aggarwal and ChengXiang Zhai 1. Introduction 1 2. Algorithms for Text Mining 4 3. Future Directions 8 References 10 2 Information Extraction from Text 11 Jing Jiang 1. Introduction 11 2. Named Entity Recognition 15 2.1 Rule-based Approach 16 2.2 Statistical Learning Approach 17 3. -
Leveraging Verbnet to Build Corpus-Specific Verb Clusters
Leveraging VerbNet to build Corpus-Specific Verb Clusters Daniel W Peterson and Jordan Boyd-Graber and Martha Palmer University of Colorado daniel.w.peterson,jordan.boyd.graber,martha.palmer @colorado.edu { } Daisuke Kawhara Kyoto University, JP [email protected] Abstract which involved dozens of linguists and a decade of work, making careful decisions about the al- In this paper, we aim to close the gap lowable syntactic frames for various verb senses, from extensive, human-built semantic re- informed by text examples. sources and corpus-driven unsupervised models. The particular resource explored VerbNet is useful for semantic role labeling and here is VerbNet, whose organizing princi- related tasks (Giuglea and Moschitti, 2006; Yi, ple is that semantics and syntax are linked. 2007; Yi et al., 2007; Merlo and van der Plas, To capture patterns of usage that can aug- 2009; Kshirsagar et al., 2014), but its widespread ment knowledge resources like VerbNet, use is limited by coverage. Not all verbs have we expand a Dirichlet process mixture a VerbNet class, and some polysemous verbs model to predict a VerbNet class for each have important senses unaccounted for. In addi- sense of each verb, allowing us to incorpo- tion, VerbNet is not easily adaptable to domain- rate annotated VerbNet data to guide the specific corpora, so these omissions may be more clustering process. The resulting clusters prominent outside of the general-purpose corpora align more closely to hand-curated syn- and linguistic intuition used in its construction. tactic/semantic groupings than any previ- Its great strength is also its downfall: adding ous models, and can be adapted to new new verbs, new senses, and new classes requires domains since they require only corpus trained linguists - at least, to preserve the integrity counts. -
Statistical Machine Translation with a Factorized Grammar
Statistical Machine Translation with a Factorized Grammar Libin Shen and Bing Zhang and Spyros Matsoukas and Jinxi Xu and Ralph Weischedel Raytheon BBN Technologies Cambridge, MA 02138, USA {lshen,bzhang,smatsouk,jxu,weisched}@bbn.com Abstract for which the segments for translation are always fixed. In modern machine translation practice, a sta- However, do we really need such a large rule set tistical phrasal or hierarchical translation sys- to represent information from the training data of tem usually relies on a huge set of trans- much smaller size? Linguists in the grammar con- lation rules extracted from bi-lingual train- struction field already showed us a perfect solution ing data. This approach not only results in space and efficiency issues, but also suffers to a similar problem. The answer is to use a fac- from the sparse data problem. In this paper, torized grammar. Linguists decompose lexicalized we propose to use factorized grammars, an linguistic structures into two parts, (unlexicalized) idea widely accepted in the field of linguis- templates and lexical items. Templates are further tic grammar construction, to generalize trans- organized into families. Each family is associated lation rules, so as to solve these two prob- with a set of lexical items which can be used to lex- lems. We designed a method to take advantage icalize all the templates in this family. For example, of the XTAG English Grammar to facilitate the extraction of factorized rules. We experi- the XTAG English Grammar (XTAG-Group, 2001), mented on various setups of low-resource lan- a hand-crafted grammar based on the Tree Adjoin- guage translation, and showed consistent sig- ing Grammar (TAG) (Joshi and Schabes, 1997) for- nificant improvement in BLEU over state-of- malism, is a grammar of this kind, which employs the-art string-to-dependency baseline systems factorization with LTAG e-tree templates and lexical with 200K words of bi-lingual training data.