UNIT 1 GEOINFORMATICS: an Introduction INTRODUCTION

Total Page:16

File Type:pdf, Size:1020Kb

UNIT 1 GEOINFORMATICS: an Introduction INTRODUCTION Geoinformatics: An UNIT 1 GEOINFORMATICS: AN Introduction INTRODUCTION Structure 1.1 Introduction Objectives 1.2 What is Geoinformatics? 1.3 Components of Geoinformatics Computer Science Geodesy Cartography Photogrammetry Remote Sensing Global Positioning System Geographical Information System 1.4 Advantages 1.5 Evolution of Geoinformatics as a Multidisciplinary Discipline 1.6 Applications 1.7 Geoinformatics Products 1.8 Activity 1.9 Summary 1.10 Unit End Questions 1.11 References 1.12 Further/Suggested Reading 1.13 Answers 1.1 INTRODUCTION You know that the increasing human population is exerting an unprecedented pressure on the existing natural resources. Therefore, in order to meet the ever increasing demand on the infrastructure development, urban planning, healthy neighbourhood, safe transportation of human populace and material, management of natural resources, disaster preparedness of the community, conservation of biodiversity and elevating the status of endangered animals to safe level, etc. require a comprehensive approach with careful understanding of geography of the Earth. Here comes the power of ‘Geoinformatics’, which uses the modern scientific and technological advancements for better utilisation of space to have for sustainable human growth. Geoinformatics can be defined as the science and technology that deals with the geoinformation, its acquisition, creation, storage, processing, presentation and dissemination. And, by spatial information and data we mean any information and data that can be linked to a location on Earth. As you are being introduced to the new discipline of geoinformatics, we would like to present you some real time examples on how the geoinformatics technology could be better utilised to manage the day-to-day affairs and 7 Overview of Geoinformatics increase your efficiency. For example all major Telecom companies in India use geoinformatics technologies to lay their cables and locate mobile towers. Power sectors across Indian states have identified geoinformatics technologies as the decision support tool for locating the electrical assets in towns to reduce transmission loss and reduce electrical theft through consumer mapping. With this brief introductory note on geoinformatics and its diverse applications, we further proceed to appraise you of varied components and products of geoinformatics. Objectives After studying this unit you should be able to: • define geoinformatics; • identify various components of geoinformatics; • develop a concept of its advantages and diverse applications; • recognise the evolution of geoinformatics; • discuss the multidisciplinary nature of geoinformatics; and • list types of geoinformatics products. 1.2 WHAT IS GEOINFORMATICS? Geoinformatics today has become an important technology to the decision- makers across a wide range of disciplines, industries and organisations as it enables them to acquire, process, analyse, visualise spatial information and Earth science deals with produce outputs. Now, before we delve deeper into the Geoinformatics the study of different aspects of the Earth. technology, let us first understand the meaning of the term Geoinformatics. Informatics is understood The term geoinformatics consists of two words, geo (Earth) and informatics as the study of (the study of information processing). Hence, geoinformatics can be information processing. understood as the union of Earth sciences and Informatics. We can say that Geoinformatics broadly deals with the use of information technology for Geographic refers to the collection, analysis, storage, retrieval, representation and dissemination Earth’s surface and near surface whereas spatial is of information about the Earth. a broad term which refers The term ‘geoinformatics’ is believed to have come in existence just few to any space and not just the space of the Earth’s decades back as a result of the integration of three disciplines, namely surface. photogrammetry, remote sensing and geographic information systems. Though the term There is another term i.e. ‘geomatics’, which was first used in Canada at Laval geospatial is a subset of University in the early 1980s to describe the above mentioned disciplines spatial, it is commonly realising the concept that increasing potential of computing which was used to refer to any revolutionising surveys and representation sciences. According to the spatial data. Department of Geomatics Engineering, University of Calgary, “Geomatics Engineering is a modern discipline, which integrates acquisition, modelling, analysis, and management of spatially referenced data, i.e. data identified according to their locations”. Geomatics Industry Association of Canada (GIAC) defines geomatics “as a technology and service sector focusing on the acquisition, storage, analysis, dissemination and management of geographically referenced information for improved decision-making”. 8 The word Geomatics is derived from the French word Ge´omatique, which Geoinformatics: An was coined by Dubuisson, a French Photogrammetrist. The term Geomatics is Introduction more commonly used in North America whereas Geoinformatics seems to be more popular in Europe such as in Netherlands where there is a Geoinformatics Department at the famous ITC (International Institute for Aerospace Survey and Earth Sciences). Michalak (2000), considers the term ‘geomatics’ to be interchangeable with ‘geoinformatics’. However, some people are of the opinion that though both geomatics and geoinformatics include and rely heavily upon the theory and practical implications of geodesy. There is a difference in the meanings that the terms geomatics and geoinformatics convey. Let us come back to the definition of geoinformatics. Wikipedia defines geoinformatics as “…the science and the technology which develops and uses information science infrastructure to address the problems of geography, geosciences and related branches of engineering”. According to Jachimski (2001), ‘geoinformatics’ is “...the science of the gathering, processing and dissemination of information which is spatially defined within the Earth’s system”. Geoinformatics has been described as “the science and the technology dealing with the structure and character of spatial information, its capture, its classification, its storage, processing, portrayal and dissemination, including the infrastructure necessary to secure optimal use of this information” or “the art, science and technology dealing with the acquisition, storage, processing, production, presentation and dissemination of geoinformation” (Oledzki, 2004). Conceptualisation of Geoinformatics is represented in Fig. 1.1. Fig. 1.1: Conceptualisation of Geoinformatics (modified from Oledzki, 2004) Oledzki (2004) believes that the term Geoinformatics is more easily understood, and is much better at conveying the essence of spatial research focusing on informatics. Hence, in the course material the term Geoinformatics (GI) would be used. With this background, you will now be able to define geoinformatics. 9 Overview of Geoinformatics 1.3 COMPONENTS OF GEOINFORMATICS From our discussion on the definition aspect of geoinformatics, we understand that geoinformatics is an integrated spatial research tool. It encompasses a broad range of disciplines including surveying and mapping, Remote Sensing, Geographic Information Systems (GIS), Global Positioning System (GPS), Geodesy and computer science. Various components of geoinformatics are the followings: • Computer Science • Geodesy • Cartography • Photogrammetry • Remote Sensing (RS) • Global Positioning System (GPS) • Geographic Information System (GIS) You would be introduced to the major disciplines later in the relevant courses. However, let us get a brief idea about the various disciplines that constitutes geoinformatics. 1.3.1 Computer Science Informatics, as a discipline, comprises of both the computer technologies, i.e. hardware and software. The important role of information derives from our Computer science is composed of many broad necessity to manage more and more numerous and complex data in every disciplines, including field. The knowledge of computer science is a pre-requisite to represent and artificial intelligence and process applicable information through the development of hardware and software engineering. software. Computer science culture is now more prevalent contributing in improvement of our activities and research. The application and usage of computer science to geoinformatics go hand-in-hand. You will come across various aspects of the application of computer science to geoinformatics while studying about geoinformatics data acquisition, processing, product generation, data visualisation, dissemination, etc. 1.3.2 Geodesy Geodesy also known as geodetics is the discipline that deals with the measurement and representation of the Earth. Geodesy is defined as the science concerned with the study of shape and area of the Earth. Geodesy defines the shape and dimensions of the Earth through its two branches: gravimetry and positioning astronomy. Gravimetry deals with the determination of Earth’s gravity and its anomalies and the gravity determines the shape of the Earth. Positioning astronomy determines the position of the points on the globe through the observation of stars and artificial satellites. The study of geodesy began with mere curiosity and the never-ending human inquisitiveness to explain the Earth’s unknown through logic. It has been a great challenge for researchers to accurately represent the 3-dimensional
Recommended publications
  • Geoscience Information Society
    GEOSCIENCE INFORMATION SOCIETY Geoscience Information: Making the Earth Sciences Accessible for Everyone Proceedings Volume 38 2007 Proceedings of the 42nd Meeting of the Geoscience Information Society October 28-31, 2007 Denver, Colorado USA GEOSCIENCE INFORMATION: MAKING THE EARTH SCIENCES ACCESSIBLE FOR EVERYONE Edited by Claudette Cloutier Proceedings Volume 38 2007 Geoscience Information Society Copyright 2009 by the Geoscience Information Society Material published in this volume may be reproduced and distributed in any format via any means by individuals for research, classroom, or reserve use. In addition, authors may use all or part of this work in any future works provided that they credit the original publication by the Society. GEOSCIENCE INFORMATION SOCIETY ISBN: 978-0-934485-42-5 For information about copies of this proceedings volume or earlier issues, contact: Publications Manager Geoscience Information Society C/O American Geological Institute 4220 King Street Alexandria, VA 22302-1502 USA Cover illustration: Blue Bear at the Denver Conference Center. Photo by Elizabeth Thomsen at http://www.flickr.com/photos/ethomsen/148894381/. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike License. TABLE OF CONTENTS PREFACE ..................................................................................................................................................... v PART 1: GSA Topical Session T144 .........................................................................................................
    [Show full text]
  • Handbook of Research on Geoinformatics
    Handbook of Research on Geoinformatics Hassan A. Karimi University of Pittsburgh, USA INFORMATION SCIENCE REFERENCE Hershey • New York Director of Editorial Content: Kristin Klinger Director of Production: Jennifer Neidig Managing Editor: Jamie Snavely Assistant Managing Editor: Carole Coulson Typesetter: Jeff Ash Cover Design: Lisa Tosheff Printed at: Yurchak Printing Inc. Published in the United States of America by Information Science Reference (an imprint of IGI Global) 701 E. Chocolate Avenue, Suite 200 Hershey PA 17033 Tel: 717-533-8845 Fax: 717-533-8661 E-mail: [email protected] Web site: http://www.igi-global.com and in the United Kingdom by Information Science Reference (an imprint of IGI Global) 3 Henrietta Street Covent Garden London WC2E 8LU Tel: 44 20 7240 0856 Fax: 44 20 7379 0609 Web site: http://www.eurospanbookstore.com Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher. Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark. Library of Congress Cataloging-in-Publication Data Handbook of research on geoinformatics / Hassan A. Karimi, editor. p. cm. Includes bibliographical references and index. Summary: "This book discusses the complete range of contemporary research topics such as computer modeling, geometry, geoprocessing, and geographic information systems"--Provided by publisher. ISBN 978-1-59904-995-3 (hardcover) -- ISBN 978-1-59140-996-0 (ebook) 1.
    [Show full text]
  • Bsc Geoinformatics (02133393)
    University of Pretoria Yearbook 2021 BSc Geoinformatics (02133393) Department Geography, Geoinformatics and Meteorology Minimum duration of 3 years study Total credits 425 NQF level 07 Admission requirements ● The closing date is an administrative admission guideline for non-selection programmes. Once a non-selection programme is full and has reached the institutional targets, then that programme will be closed for further admissions, irrespective of the closing date. However, if the institutional targets have not been met by the closing date, then that programme will remain open for admissions until the institutional targets are met. ● The following persons will be considered for admission: candidates who are in possession of a certificate that is deemed by the University to be equivalent to the required National Senior Certificate with university endorsement, candidates who are graduates from another tertiary institution or have been granted the status of a graduate of such an institution, and candidates who are graduates of another faculty at the University of Pretoria. ● Life Orientation is excluded from the calculation of the Admission Point Score (APS). ● Grade 11 results are used for the conditional admission of prospective students. Final admission is based on Grade 12 results. ● Please note that the Faculty does not accept GED and School of Tomorrow qualifications for entry into our programmes. Transferring students Candidates previously registered at UP or at another university The faculty’s Admissions Committee considers applications of candidates who have already completed the final NSC or equivalent qualification examination and/or were previously registered at UP or another university, on grounds of their final NSC or equivalent qualification results as well as academic merit.
    [Show full text]
  • Geoinformatics (GI) (Nsf21583) |
    Geoinformatics (GI) PROGRAM SOLICITATION NSF 21-583 REPLACES DOCUMENT(S): NSF 19-561 National Science Foundation Directorate for Geosciences Division of Earth Sciences Full Proposal Deadline(s) (due by 5 p.m. submitter's local time): August 16, 2021 August 15, Every Other Year Thereafter IMPORTANT INFORMATION AND REVISION NOTES Revisions from NSF 19-561 include: Updated Award Information, including the anticipated funding amount, is provided. Updated introduction and description of the Geoinformatics program, detailing a new program emphasis on justice, equity, diversity, and inclusion (JEDI), is provided. Proposers are now required to identify whether their proposal is "Catalytic", "Facility" or "Sustainability" track in the beginning of the proposal title. The Essential Elements and Additional Solicitation Specific Review Criteria for proposals have been updated. Proposals may now include requests for cloud computing resources through an external cloud access entity supported by NSF's Enabling Access to Cloud Computing Resources for CISE Research and Education (Cloud Access) Program. Additional proposal preparation instructions now apply. Please see the full text of this solicitation for further information. Additional award conditions now apply. Please see the full text of this solicitation for further information. Any proposal submitted in response to this solicitation should be submitted in accordance with the revised NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 20-1), which is effective for proposals submitted, or due, on or after June 1, 2020. SUMMARY OF PROGRAM REQUIREMENTS General Information Program Title: Geoinformatics (GI) Synopsis of Program: The Division of Earth Sciences (EAR) will consider proposals for the development of cyberinfrastructure (CI) for the Earth Sciences (Geoinformatics).
    [Show full text]
  • Curriculum of Geoinformatics – Integration of Remote Sensing and Geographical Information Technology
    Virrantaus, Kirsi CURRICULUM OF GEOINFORMATICS – INTEGRATION OF REMOTE SENSING AND GEOGRAPHICAL INFORMATION TECHNOLOGY Kirsi VIRRANTAUS*, Henrik HAGGRÉN** Helsinki University of Technology, Finland Department of Surveying *Institute of Geodesy and Cartography [email protected] **Institute of Photogrammetry and Remote Sensing [email protected] KEY WORDS: Geoinformatics, Geoinformation technique, Remote Sensing, Information technique, Curriculum, Surveyor. ABSTRACT This paper describes the development of Geoinformatics at Helsinki University of Technology as an independent curriculum in surveying studies. Geoinformatics includes Geoinformation Technique and Remote Sensing. The goal of this curriculum is to produce graduated students who have knowledge both in vector and raster based geoinformation processing. GIS design and software development, vector based data base management as well as algorithms for analysis and methods of visualization are representatives of the educational contents of Geoinformation Technique. Remote Sensing includes image processing methods, satellite technologies and use of images in different application areas. This paper outlines the structure and contents of this curriculum. We also discuss the need of Geoinformatics as an independent curriculum in the network of university curricula. 1 INTRODUCTION 1.1 BACKGROUND In most universities the curricula of Remote Sensing (RS) and Geoinformation Technique (GIT) are separated into different laboratories under different professorships. While Remote Sensing
    [Show full text]
  • Geoinformatics for Natural Resources Management Vis-À-Vis Environmental Justice
    Geoinformatics for Natural Resources Management vis-à-vis Environmental Justice Parthasarathi Chakrabarti Remote Sensing Cell, DST & NES, Govt. of West Bengal, Bikash Bhavan, Salt Lake, Kolkata – 700 091 [email protected] KEYWORDS: Geo-environmental Mapping, Remote Sensing, Change Detection, Visualization, GIS ABSTRACT: In natural resources and environmental management Environmental Impact Analysis (EIA) is an essential component to specify the guidelines for biodiversity conservation. Conceptually, ‘Geo-environmental mapping’ depicts EIA results in spatial format exemplifying the change in geosphere of the environment in human orientation. Easy-to-understand presentation of data in 'Geo-environmental mapping' requires identification of Geo-environmental indicators and unit, in relation to Natural System Unit (NSU) or Terrain Mapping Unit (TMU) through terrain evaluation procedure. In this respect, Geo-informatics (operational combination of RS and GIS technologies) play facilitator role in collection and visualization of up-to-date spatial data as well as integration and analysis of the same with aspatial database to generate application specific 'strategic datasets' for technological adjustment (structural means) and social adaptations (non-structural means), towards environmentally sound landuse/ landcover practices, minimizing the adverse effects of natural hazards (e.g. droughts, floods, bank failure) land degradation etc. This paper speaks on applicability of ‘Geo-environmental mapping’ citing case history examples from eastern
    [Show full text]
  • MAP DESIGN a Development of Background Map Visualisation in Digpro Dppower Application
    EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2017 MAP DESIGN A development of background map visualisation in Digpro dpPower application FREDRIK AHNLÉN KTH SKOLAN FÖR ARKITEKTUR OCH SAMHÄLLSBYGGNAD Acknowledgments Annmari Skrifvare, Digpro AB, co-supervisor. For setting up test environment, providing feed- back and support throughout the thesis work. Jesper Svedberg, Digpro AB, senior-supervisor. For providing feedback both in the start up process of the thesis work as well as the evaluation part. Milan Horemuz, KTH Geodesy and Geoinformatics, co-supervisor. For assisting in the structur- ing of the thesis work as well as providing feedback and support. Anna Jenssen, KTH Geodesy and Geoinformatics, examiner. Finally big thanks to Anders Nerman, Digpro AB, for explaining the fundamentals of cus- tomer usage of dpPower and Jeanette Stenberg, Kraftringen, Gunilla Pettersson, Eon Energi, Karin Backström, Borlänge Energi, Lars Boström, Torbjörn Persson and Thomas Björn- hager, Smedjebacken Energi Nät AB, for providing user feedback via interviews and survey evaluation. i Abstract What is good map design and how should information best be visualised for a human reader? This is a general question relevant for all types of design and especially for digital maps and various Geographic Information Systems (GIS), due to the rapid development of our digital world. This general question is answered in this thesis by presenting a number of principles and tips for design of maps and specifically interactive digital visualisation systems, such as a GIS. Furthermore, this knowledge is applied to the application dpPower, by Digpro, which present the tools to help customers manage, visualise, design and perform calculations on their electrical networks.
    [Show full text]
  • Astro2020 State of the Profession Consideration White Paper
    Astro2020 State of the Profession Consideration White Paper Realizing the potential of astrostatistics and astroinformatics September 27, 2019 Principal Author: Name: Gwendolyn Eadie4;5;6;15;17 Email: [email protected] Co-authors: Thomas Loredo1;19, Ashish A. Mahabal2;15;16;18, Aneta Siemiginowska3;15, Eric Feigelson7;15, Eric B. Ford7;15, S.G. Djorgovski2;20, Matthew Graham2;15;16, Zˇeljko Ivezic´6;16, Kirk Borne8;15, Jessi Cisewski-Kehe9;15;17, J. E. G. Peek10;11, Chad Schafer12;19, Padma A. Yanamandra-Fisher13;15, C. Alex Young14;15 1Cornell University, Cornell Center for Astrophysics and Planetary Science (CCAPS) & Department of Statistical Sciences, Ithaca, NY 14853, USA 2Division of Physics, Mathematics, & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 3Center for Astrophysics j Harvard & Smithsonian, Cambridge, MA 02138, USA 4eScience Institute, University of Washington, Seattle, WA 98195, USA 5DIRAC Institute, Department of Astronomy, University of Washington, Seattle, WA 98195, USA 6Department of Astronomy, University of Washington, Seattle, WA 98195, USA 7Penn State University, University Park, PA 16802, USA 8Booz Allen Hamilton, Annapolis Junction, MD, USA 9Department of Statistics & Data Science, Yale University, New Haven, CT 06511, USA 10Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA arXiv:1909.11714v1 [astro-ph.IM] 25 Sep 2019 11Space Telescope Science Institute, Baltimore, MD 21218, USA 12Department of Statistics & Data Science Carnegie Mellon University, Pittsburgh,
    [Show full text]
  • GIS-Geographic Information Science 1
    GIS-Geographic Information Science 1 GIS 4133 Fundamentals of Remote Sensing 3 Credit Hours GIS-GEOGRAPHIC INFORMATION (Slashlisted with GIS 5133) Prerequisite: junior standing or permission of instructor. An introduction to the theory and interpretation of remote SCIENCE sensing imagery, with emphasis on photographic, multi-spectral, thermal, and microwave remote sensing systems. Imagery from aircraft, GIS 2013 Geospatial Technologies and Society 3 Credit Hours satellite and low-altitude platforms will be used to illustrate geographic Prerequisite: ENGL 1213. Examines the impacts of geospatial and environmental applications of remote sensing. Introduction to technologies on 21st-century society and considers how these rapidly preprocessing (DIP). No student may earn credit for both 4133 and 5133. evolving technologies can be used most effectively to promote global (F) environmental sustainability and social justice. (Irreg.) GIS 4200 Internship in Geoinformatics 1-6 Credit Hours GIS 2023 Introduction to Spatial Thinking and Computer 1 to 6 hours. Prerequisite: junior standing and permission of instructor. Mapping 3 Credit Hours May be repeated; maximum credit six hours. Provides career training Facilitates the effective communication of geographic information experience whereby students may apply geoinformatics skills and further through sound cartographic principles and techniques. Introduces develop professional capabilities in a realistic setting. Students will students to geographic information literacy, spatial perspectives on be assigned to private industry, government agencies or educational information management, and the use of maps as a communication tool. institutions on an individual basis and report on their experience to the (Sp) instructor. (F, Sp, Su) GIS 2970 Special Topics 1-3 Credit Hours GIS 4233 Digital Image Processing 3 Credit Hours Special Topics.
    [Show full text]
  • Course Structure and Syllabi Geoinformatics Effective from Academic Session 2015
    Department of Earth Sciences University of Kashmir, Srinagar- I90006, J & K Course Structure and Syllabi for Masters in Geoinformatics Choice Based Credit System Effective from academic session 2015 1 Choice based Credit System (CBCS) Scheme and course structure for M.Sc. Geoinformatics 1st semester effective from academic session 2015 and onwards 1st Semester Course Code Course Name Paper Hours per Credits Category week L T P GI15101CR Computers & Core 3 0 2 3+0+1=4 Geoinformation Management GI15102CR Fundamentals of Core 3 0 2 3+0+1=4 Remote Sensing. GI15103CR Fundamentals of GIS Core 3 0 2 3+0+1=4 GI15104DCE Cartography & Elective ( DCE ) 2 2 0 2+1+0=3 Geoinformation Visualization. GI15105DCE Applications of Remote Elective ( DCE ) 2 2 0 2+1+0=3 sensing & GIS GI15106DCE Surveying techniques Elective ( DCE ) 2 2 0 2+1+0=3 GI15307GE Climatology Elective ( GE ) 2 2 0 2+1+0=3 GI15108GE Environmental Geology Elective (GE) 2 2 0 2+1+0=3 GI15109OE Introduction to Remote Elective (OE) 2 2 0 2+1+0=3 sensing and GIS 18 Credit= 23 Contact Hours 21 12 6 18 L= Lecture; T= Tutorial; P= Practical GI15101CR: COMPUTERSANDGEO-INFORMATIONMANAGEMENT Course Goals Develop basic skills and understanding of the computer operations. Development of basic computer programming skills. Geo-information data handling and management. Computer Basics: Introduction to computers: Characteristics and history. Classification of computers, hardware: Input/ output devices, Secondary storage devices, Software: types, translators, interpreters, compilers and editors. Introduction to operating systems: DOS, WINDOWS, and UNIX. Introduction to number system.Flowcharts and Algorithms with examples.
    [Show full text]
  • Application of Geoinformatics for Landscape Assessment and Conserving Forest Biodiversity in Northeast India
    Application of Geoinformatics for Landscape Assessment and Conserving Forest Biodiversity in Northeast India Ashish Kumarl*, Bruce G. Marcot2, GautamTalukdai' and P.S. Roy4 lCS Division, Ministry ofEnvir onment and Forests, Government ofIndia, New Delhi - 1J 0 003, India 2USDA Forest Service, PacificNorthwest Research Station, 620 S. W Main Street, Portland, OR 97205, US.A. 3 Wildlife Institute of India, Chandrabani, Dehradun - 248001, India. -IIndian institute of Remote Sensing, Kalidas Road, Dehradun 248001, India. Abstract Herein, we summarize our work,within forest ecosystems of Garo Hills in northeast India, on mapping vegetation and land cover conditions, delineating wildlife habitat corridors among protected areas, evaluating forest conservation values of influencezones bordering protected areas, analyzing dispersion patternsof native forests, and determining potential effectsof shifting-cultivation agriculture and anthropogenic stressors on an umbrella species (Asian elephant) as an indicator of forest biodiversity. This work demonstrates our use of multiple geoinformatic methods to help advise on conservation of native forests, wildlife, and biodiversity at the landscape scale. We also suggest some recent advances in geoinformatic techniques and models that could be further applied to our study area and beyond. Key words: Geoinformatics, Spatial Statistics, Forest Management, Biodiversity Conservation, Garo Hills, Meghalaya, Northeast India, Shifting Cultivation. 1. Introduction attributes for developing strategies to conserve biodiversity of native, tropical forests to help ensure sustainable use of Forest biodiversity -- the variety of life and its processes their goods and services. We highlight our salient findings within forest ecosystems -- provides a wide array of goods and discuss our methods, which entail use of remote sensing and services including timber and non-timber forest (RS) data and geographic information systems (GIS) for resources, amenity values, genetic resources, and mitigation landscape assessments.
    [Show full text]
  • ADVANCED GEOGRAPHIC INFORMATION SYSTEMS – Vol
    ADVANCED GEOGRAPHIC INFORMATION SYSTEMS – Vol. I - Advanced Geographic Information Systems - Claudia Bauzer Medeiros ADVANCED GEOGRAPHIC INFORMATION SYSTEMS Claudia Bauzer Medeiros Institute of Computing, University of Campinas, Campinas, Brazil Keywords: database integration, environmental planning applications, geographic databases, geoinformatics, geographic information systems, GIS science, information technology, remote sensing data, transdisciplinary research, urban planning applications, Web information management Contents 1. Introduction: the Information Society and Geographic Information Systems 2. Geographic Data: What Are They, and How To Integrate Them? 3. Technology: What Lies Around a GIS? 4. Software: What Is a Geographic Information System? 5. People and Geographic Systems: Who and Where is the User? 6. Geographic Applications: Everything, Everywhere, Everywhen 7. Future Developments: What Might Lie Ahead? Acknowledgments Glossary Bibliography Biographical Sketch Summary Geographic information systems (GIS) are large sets of integrated software modules, developed around a database management system, which manage, analyze, and display geographic data. Being pieces of software, they are fated to a speedy decay, given the rate of progress in information technology. The advanced system of today is outdated the very next day. How, then, can “advanced” systems be presented? One of the challenges faced by this theme is how to discuss geographic software systems avoiding this quick obsolescence. The approachUNESCO taken here is
    [Show full text]