Ideals in Quotient Semirings Shahabaddin Ebrahimi Atani and Ameneh Gholamalipour Garfami Faculty of Mathematical Sciences, University of Guilan, P.O

Total Page:16

File Type:pdf, Size:1020Kb

Ideals in Quotient Semirings Shahabaddin Ebrahimi Atani and Ameneh Gholamalipour Garfami Faculty of Mathematical Sciences, University of Guilan, P.O Chiang Mai J. Sci. 2013; 40(1) 77 Chiang Mai J. Sci. 2013; 40(1) : 77-82 http://it.science.cmu.ac.th/ejournal/ Contributed Paper Ideals in Quotient Semirings Shahabaddin Ebrahimi Atani and Ameneh Gholamalipour Garfami Faculty of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht, Iran. *Author for correspondence; e-mail: [email protected] Received: 10 November 2010 Accepted: 5 October 2011 ABSTRACT Since the class of quotient rings is contained in the class of quotient semirings, in this paper, we will make an intensive study of the properties of quotient semirings as compared to similar properties of quotient rings. The main aim of this paper is that of extending some well-known theorems in the theory of quotient rings to the theory quotient semirings. Keywords: quotient semirings, weakly prime ideals, weakly primal ideal, semidomain like semirings 1. INTRODUCTION Semirings are natural topic in algebra ideal as in the ring case. There are many to study because they are the algebraic different definitions of a quotient semiring structure of the set of natural numbers. appearing in the literature. P.J. Allen ([2]) Semirings also appear naturally in many introduced the notion of Q-ideal and a areas of mathematics. For example, semirings construction process was presented by are useful in the area of theoretical computer which one can build the quotient structure science as well as in the solution of of a semiring modulo a Q-ideal (also see problem in graph theory and optimiza- the results listed in [3-5,7,8]). If I is an tion. In structure, semirings lie between ideal of a semiring R, then Golan has semigroups and rings. The class of rings is presented the notion quotient semiring contained in the class of semirings [7,8]. R/I, but this definition is different from Therefore, all of the properties given here the definition of Allen (see Section 2). apply to rings. Here we follow the definition of Golan. This paper generalizes some well- The main part of this paper is devoted to known result on quotient rings in stating and proving analogues to several commutative rings to commutative well-known theorems in the theory of semirings. The maindifficulty is figuring quotient rings (see Section 2). out what additional hypotheses the In order to make this paper easier to semiring or ideal must satisfy to get similar follow, we recall here various notions results. Quotient semirings are determined from semiring theory which will be used by equivalence relations rather than by in the sequel. A commutative semiring R 78 Chiang Mai J. Sci. 2013; 40(1) is defined as an algebraic system (R,+,.) (r + I) + (s + I) = r + s + I and (r + I) + such that (R,+) and (R,.) are commutative (s + I) = rs + I [7]. Our starting point is semigroups, connected by a(b + c) = ab + ac the following lemma. for all a, b, c ∈ R, and there exists 0 ∈ R such that r + 0 = r and r0 = 0r = 0 for each Lemma 2.1 Let I be an ideal of a semiring R. r ∈ R. In this paper all semirings considered Then the following hold: will be assumed to be commutative with (1) If a ∈ I, then a + I = I. non-zero identity. A subset I of a semiring (2) If I is a k-ideal of R and a ∈ I, then R will be called an ideal if a, b ∈ I and a + I = b + I for every b ∈ R if and only if r ∈ R implies a + b ∈ I and ra ∈ I. b ∈ I. In particular, c + I = I if and only if A subtractive ideal (= k-ideal) J is an ideal c ∈ I. such that if x, x + y ∈ J then y ∈ J (so {0} is a k-ideal of R). A prim ideal of R is a Proof. (1) Since a + 0 = 0 + a, we conclude proper ideal P of R in which x ∈ P or that a ~ 0; hence a + I = 0 + 1. y ∈ P whenever xy ∈ P. A primary ideal (2) Let a + I = b + I for every b ∈ R. P of R is a proper ideal of R such that, if Then a + u = b + v for some u, v ∈ I; so xy ∈ P and x ∉ P, then y ∈ P = {r ∈ R : rn ∈ P b ∈ I since I is a k-ideal. The other for some positive integer n}. A semiring R implication follows from (1) and the fact I is said to be a semidomain if ab = 0 (a, b ∈ R), is a k-ideal of R. then either a = 0 or b = 0. A semifield is a semiring in which non-zero elements from Lemma 2.2 Let I and J be ideals of a a group under multiplication. An element semiring R with I ⊆ J. Then the following a of a semiring R is called zero-divisor of hold: R if there exists 0 ≠ b ∈ R such that ab = 0 (1) J/I ={a + I: a ∈ J} is an ideal of (not here that we include 0 in the set of R/I. In particuar, if J is a k-ideal of R, then zero-divisors of semiring). The collection J/I is a k-ideal of R/I. of all zero-divisors of R will be denoted by (2) If 1+I ∈ J/I, then R/I= J/I. Z(R). Furthermore, the subset {a ∈ R: (3) If a+I is a invertible element of R/I there exists a positive integer such that with a+I ∈ J/I, then R/I=J/I. an = 0} of Z(R) consisting of the nilpotent elements of R will be denoted by nil (R), Proof. (1)Cleary, 0 + I ∈ J/I. Let a + I, b + the nilradical of R. I ∈ J/I and r + I ∈ R)/I. It is easy to see that (a + I) + (b + I) = a + b + I ∈ J/I and (r + I) 2. RESULTS (a + I) = ra + I ∈ J/I. Thus J/I is an ideal Quotients semirings are determined of R/I. Finally, assume that u + I ∈ J/I and by equivalence relations rather than by (u + I) + (v + I) = u + v + I ∈ J/I, where ideals as in the ring case. If I is an ideal of u ∈ J and v ∈ R. It then follows that semiring R, we define a relation on R, given u + v + t1 = c + t2 for some t1, t2 ∈ I and c ∈ J; by r1 ~ r2 if and only if there exist a1, a2 ∈ I hence v ∈ J since J is a k-ideal. Thus v + I satisfying r1 + a1 = r2 + a2. Then is an ∈ J/I, and the proof is complete. equivalence relation on R, and we denote (2) Let x + I ∈ R/I. Then (x + I) (1 + I) the equivalence class of r by r + I and these = x + I ∈ J/I; hence R/I ⊆ J/I, as required. collection of all equivalence classes by R/I. (3) Follows from (2). Golan shows that R/I is a semiring with Chiang Mai J. Sci. 2013; 40(1) 79 Theorem 2.3 Let I be an ideal of a semiring Theorem 2.4 Let P be a proper k-ideal of R. Then the following hold: a semiring R. Then the following hold: (1) If L is an ideal of R/I, then L = J/I for (1) P is a maximal k-ideal of R if and some ideal J of R. only if R/I is a semifield. (2) If P is a k-ideal of R with I ⊆ P, then (2) If I is an ideal of R with I ⊆ P, then P is a prime ideal of R if and only if P/I is a P is a maximal k-ideal of R if and only if prime ideal of R/I. P/I is a maximal ideal of R/I. (3) I is a prime k-ideal of R if and only R/I (0) if is a semidomain. In particular, is Proof. (1) Let P be a maximal ideal of R. prime if and onlyif only R is a semidomain. It suffices to show that every non-zero Proof. (1) Assume that J = {r ∈ R : r +I ∈ L} element a + P of R/P is invertible. By and let a ∈ I. Then by Lemma 2.1, a + I = Lemma 2.1, a ∉ P; hence P + Ra = R by 0 + I ∈ L; hence I ⊆ J. Let a,b ∈ J and r ∈ R. maximality of P. There exist r ∈ R and p ∈ P Then (a + I)+(b + I) = a + b + I ∈ L; so such that ra + p = 1. It then follows from a + b ∈ J. Similarly, ra ∈ J. Thus J is an Lemma 2.1 that (r + P)(a + P) = 1 + P. ideal of R. Finally, it is easy to see that Thus a + P is invertible. Conversely, L = J/I. assume that R/P is a semifield and P J (2) Let P be a prime ideal of R. Suppose for some k-ideal J of R; we show that J = R. that r + I, s + I ∈ P/I are such that (r + I) Then there is an element b ∈ J-P such that (s + I) = rs + I ∈ P/I, where r, s ∈ R. Then b + P is invertible in R/P, so (b+P)(c+P) = rs + I = P + I for some p ∈ P. This implies bc + P = 1+P forsome c + P ∈ R/P. that rs ∈ P since P is a k-ideal.
Recommended publications
  • Semiring Frameworks and Algorithms for Shortest-Distance Problems
    Journal of Automata, Languages and Combinatorics u (v) w, x–y c Otto-von-Guericke-Universit¨at Magdeburg Semiring Frameworks and Algorithms for Shortest-Distance Problems Mehryar Mohri AT&T Labs – Research 180 Park Avenue, Rm E135 Florham Park, NJ 07932 e-mail: [email protected] ABSTRACT We define general algebraic frameworks for shortest-distance problems based on the structure of semirings. We give a generic algorithm for finding single-source shortest distances in a weighted directed graph when the weights satisfy the conditions of our general semiring framework. The same algorithm can be used to solve efficiently clas- sical shortest paths problems or to find the k-shortest distances in a directed graph. It can be used to solve single-source shortest-distance problems in weighted directed acyclic graphs over any semiring. We examine several semirings and describe some specific instances of our generic algorithms to illustrate their use and compare them with existing methods and algorithms. The proof of the soundness of all algorithms is given in detail, including their pseudocode and a full analysis of their running time complexity. Keywords: semirings, finite automata, shortest-paths algorithms, rational power series Classical shortest-paths problems in a weighted directed graph arise in various contexts. The problems divide into two related categories: single-source shortest- paths problems and all-pairs shortest-paths problems. The single-source shortest-path problem in a directed graph consists of determining the shortest path from a fixed source vertex s to all other vertices. The all-pairs shortest-distance problem is that of finding the shortest paths between all pairs of vertices of a graph.
    [Show full text]
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • Algebraic Number Theory
    Algebraic Number Theory William B. Hart Warwick Mathematics Institute Abstract. We give a short introduction to algebraic number theory. Algebraic number theory is the study of extension fields Q(α1; α2; : : : ; αn) of the rational numbers, known as algebraic number fields (sometimes number fields for short), in which each of the adjoined complex numbers αi is algebraic, i.e. the root of a polynomial with rational coefficients. Throughout this set of notes we use the notation Z[α1; α2; : : : ; αn] to denote the ring generated by the values αi. It is the smallest ring containing the integers Z and each of the αi. It can be described as the ring of all polynomial expressions in the αi with integer coefficients, i.e. the ring of all expressions built up from elements of Z and the complex numbers αi by finitely many applications of the arithmetic operations of addition and multiplication. The notation Q(α1; α2; : : : ; αn) denotes the field of all quotients of elements of Z[α1; α2; : : : ; αn] with nonzero denominator, i.e. the field of rational functions in the αi, with rational coefficients. It is the smallest field containing the rational numbers Q and all of the αi. It can be thought of as the field of all expressions built up from elements of Z and the numbers αi by finitely many applications of the arithmetic operations of addition, multiplication and division (excepting of course, divide by zero). 1 Algebraic numbers and integers A number α 2 C is called algebraic if it is the root of a monic polynomial n n−1 n−2 f(x) = x + an−1x + an−2x + ::: + a1x + a0 = 0 with rational coefficients ai.
    [Show full text]
  • A Review of Commutative Ring Theory Mathematics Undergraduate Seminar: Toric Varieties
    A REVIEW OF COMMUTATIVE RING THEORY MATHEMATICS UNDERGRADUATE SEMINAR: TORIC VARIETIES ADRIANO FERNANDES Contents 1. Basic Definitions and Examples 1 2. Ideals and Quotient Rings 3 3. Properties and Types of Ideals 5 4. C-algebras 7 References 7 1. Basic Definitions and Examples In this first section, I define a ring and give some relevant examples of rings we have encountered before (and might have not thought of as abstract algebraic structures.) I will not cover many of the intermediate structures arising between rings and fields (e.g. integral domains, unique factorization domains, etc.) The interested reader is referred to Dummit and Foote. Definition 1.1 (Rings). The algebraic structure “ring” R is a set with two binary opera- tions + and , respectively named addition and multiplication, satisfying · (R, +) is an abelian group (i.e. a group with commutative addition), • is associative (i.e. a, b, c R, (a b) c = a (b c)) , • and the distributive8 law holds2 (i.e.· a,· b, c ·R, (·a + b) c = a c + b c, a (b + c)= • a b + a c.) 8 2 · · · · · · Moreover, the ring is commutative if multiplication is commutative. The ring has an identity, conventionally denoted 1, if there exists an element 1 R s.t. a R, 1 a = a 1=a. 2 8 2 · ·From now on, all rings considered will be commutative rings (after all, this is a review of commutative ring theory...) Since we will be talking substantially about the complex field C, let us recall the definition of such structure. Definition 1.2 (Fields).
    [Show full text]
  • On Kleene Algebras and Closed Semirings
    On Kleene Algebras and Closed Semirings y Dexter Kozen Department of Computer Science Cornell University Ithaca New York USA May Abstract Kleene algebras are an imp ortant class of algebraic structures that arise in diverse areas of computer science program logic and semantics relational algebra automata theory and the design and analysis of algorithms The literature contains several inequivalent denitions of Kleene algebras and related algebraic structures In this pap er we establish some new relationships among these structures Our main results are There is a Kleene algebra in the sense of that is not continuous The categories of continuous Kleene algebras closed semirings and Salgebras are strongly related by adjunctions The axioms of Kleene algebra in the sense of are not complete for the universal Horn theory of the regular events This refutes a conjecture of Conway p Righthanded Kleene algebras are not necessarily lefthanded Kleene algebras This veries a weaker version of a conjecture of Pratt In Rovan ed Proc Math Found Comput Scivolume of Lect Notes in Comput Sci pages Springer y Supp orted by NSF grant CCR Intro duction Kleene algebras are algebraic structures with op erators and satisfying certain prop erties They have b een used to mo del programs in Dynamic Logic to prove the equivalence of regular expressions and nite automata to give fast algorithms for transitive closure and shortest paths in directed graphs and to axiomatize relational algebra There has b een some disagreement
    [Show full text]
  • Skew and Infinitary Formal Power Series
    Appeared in: ICALP’03, c Springer Lecture Notes in Computer Science, vol. 2719, pages 426-438. Skew and infinitary formal power series Manfred Droste and Dietrich Kuske⋆ Institut f¨ur Algebra, Technische Universit¨at Dresden, D-01062 Dresden, Germany {droste,kuske}@math.tu-dresden.de Abstract. We investigate finite-state systems with costs. Departing from classi- cal theory, in this paper the cost of an action does not only depend on the state of the system, but also on the time when it is executed. We first characterize the terminating behaviors of such systems in terms of rational formal power series. This generalizes a classical result of Sch¨utzenberger. Using the previous results, we also deal with nonterminating behaviors and their costs. This includes an extension of the B¨uchi-acceptance condition from finite automata to weighted automata and provides a characterization of these nonter- minating behaviors in terms of ω-rational formal power series. This generalizes a classical theorem of B¨uchi. 1 Introduction In automata theory, Kleene’s fundamental theorem [17] on the coincidence of regular and rational languages has been extended in several directions. Sch¨utzenberger [26] showed that the formal power series (cost functions) associated with weighted finite automata over words and an arbitrary semiring for the weights, are precisely the rational formal power series. Weighted automata have recently received much interest due to their applications in image compression (Culik II and Kari [6], Hafner [14], Katritzke [16], Jiang, Litow and de Vel [15]) and in speech-to-text processing (Mohri [20], [21], Buchsbaum, Giancarlo and Westbrook [4]).
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Semiring Satisfying the Identity A.B = a + B + 1 P. Sreenivasulu
    International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 6 (June 2014), PP.06-08 Semiring satisfying the identity a.b = a + b + 1 a a P. Sreenivasulu Reddy & Gosa Gadisa Department of Mathematics, Samara University Samara, Afar Region, Ethiopia. Post Box No.132 Abstract: Author determine some different additive and multiplicative structures of semiring which satisfies the identity a.b = a + b + 1. The motivation to prove this theorems in this paper is due to the results of P. Sreenivasulu Reddy and Guesh Yfter [6]. Keywords: Semiring, Rugular Semigroup I. INTRODUCTION Various concepts of regularity have been investigated by R.Croisot[7] and his study has been presented in the book of A.H.Clifford and G.B.Preston[1] as croisot’s theory. One of the central places in this theory is held by left regularity. Bogdanovic and Ciric in their paper, “A note on left regular semigroups” considered some aspects of decomposition of left regular semigroups. In 1998, left regular ordered semigroups and left regular partially ordered Г-semigroups were studied by Lee and Jung, kwan and Lee. In 2005, Mitrovic gave a characterization determining when every regular element of a semigroup is left regular. It is observed that many researchers studied on different structures of semigroups. The idea of generalization of a commutative semigroup was first introduced by Kazim and Naseeruddin in 1972 [2]. They named it as a left almost semigroup(LA-semigroup). It is also called an Abel Grassmanns groupoid (AG-semigroup)[2]. Q. Mushtaq and M.
    [Show full text]
  • A Brief History of Ring Theory
    A Brief History of Ring Theory by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005 A Brief History of Ring Theory Kristen Pollock 2 1. Introduction In order to fully define and examine an abstract ring, this essay will follow a procedure that is unlike a typical algebra textbook. That is, rather than initially offering just definitions, relevant examples will first be supplied so that the origins of a ring and its components can be better understood. Of course, this is the path that history has taken so what better way to proceed? First, it is important to understand that the abstract ring concept emerged from not one, but two theories: commutative ring theory and noncommutative ring the- ory. These two theories originated in different problems, were developed by different people and flourished in different directions. Still, these theories have much in com- mon and together form the foundation of today's ring theory. Specifically, modern commutative ring theory has its roots in problems of algebraic number theory and algebraic geometry. On the other hand, noncommutative ring theory originated from an attempt to expand the complex numbers to a variety of hypercomplex number systems. 2. Noncommutative Rings We will begin with noncommutative ring theory and its main originating ex- ample: the quaternions. According to Israel Kleiner's article \The Genesis of the Abstract Ring Concept," [2]. these numbers, created by Hamilton in 1843, are of the form a + bi + cj + dk (a; b; c; d 2 R) where addition is through its components 2 2 2 and multiplication is subject to the relations i =pj = k = ijk = −1.
    [Show full text]
  • Formal Power Series License: CC BY-NC-SA
    Formal Power Series License: CC BY-NC-SA Emma Franz April 28, 2015 1 Introduction The set S[[x]] of formal power series in x over a set S is the set of functions from the nonnegative integers to S. However, the way that we represent elements of S[[x]] will be as an infinite series, and operations in S[[x]] will be closely linked to the addition and multiplication of finite-degree polynomials. This paper will introduce a bit of the structure of sets of formal power series and then transfer over to a discussion of generating functions in combinatorics. The most familiar conceptualization of formal power series will come from taking coefficients of a power series from some sequence. Let fang = a0; a1; a2;::: be a sequence of numbers. Then 2 the formal power series associated with fang is the series A(s) = a0 + a1s + a2s + :::, where s is a formal variable. That is, we are not treating A as a function that can be evaluated for some s0. In general, A(s0) is not defined, but we will define A(0) to be a0. 2 Algebraic Structure Let R be a ring. We define R[[s]] to be the set of formal power series in s over R. Then R[[s]] is itself a ring, with the definitions of multiplication and addition following closely from how we define these operations for polynomials. 2 2 Let A(s) = a0 + a1s + a2s + ::: and B(s) = b0 + b1s + b1s + ::: be elements of R[[s]]. Then 2 the sum A(s) + B(s) is defined to be C(s) = c0 + c1s + c2s + :::, where ci = ai + bi for all i ≥ 0.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]