Biofuel Requirements in Diesel and Heating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contribution by the United Nations Secretariat
UNITED NATIONS CONFERENCE ON TRADE AND DEVELOPMENT G20 Study Group on Commodities CONTRIBUTION BY THE UNITED NATIONS SECRETARIAT April 2011 UNITED NATIONS Contribution by the United Nations Secretariat iii Table of contents Area (5) - ROLES OF FINANCIAL MARKETS IN COMMODITY PRICE DEVELOPMENTS I. Introduction ........................................................................................................................................................ 1 II. Trends and developments in financial markets for commodities....................................................................... 1 III. Roles of different types of financial market players and their consequences .................................................... 4 IV. The interplay between physical and financial markets ...................................................................................... 8 V. The overall impact on commodities price developments and market liquidity ............................................... 10 A. Trader positions and commodity prices .................................................................................................... 10 B. Herding and its effects in many different markets .................................................................................... 12 VI. Interviews of market participants .................................................................................................................... 17 VII. Conclusions ..................................................................................................................................................... -
Home Heating Oil Tanks – a Hidden Threat?
Home Heating Oil Tanks – A Hidden Threat? For many homeowners, especially those that own shorefront property, your heating oil storage tank may be the greatest risk of financial liability to which you will ever be exposed. If you are uncomfortable exposing your self to possibly hundreds of thousands of dollars of clean up costs, permanent property devaluation and legacy liens on your property, please read on. Homes have been heated with #2 heating oil and kerosene for many generations. Both fuels have proven to be safe and reliable forms of home heating energy. Compared to natural gas, propane, electric, and solid fuel - oil and kerosene carry an added risk to the homeowner - the chance of a release of federally designated Haz-Mat material which, exceeding a total release of 10 gallons, requires an extensive and expensive clean up to protect both the environment and its inhabitants from lasting negative effects. For this discussion we will look at heating tanks in three separate categories – (1) standard home heating oil tanks, usually 275 gallons and located in the cellar, (2) underground oil tanks ranging in size from 275 gallons to 1000 gallons and (3) above ground oil tanks located outside or in garages or other outbuildings. Standard cellar oil tanks Many homes have a 275-gallon oil tank located in the cellar with a fill and vent pipe terminating to the outside of the home. Current code requires that the fill pipe be equipped with an industry approved fill cap that allows your heating oil supplier to couple their delivery hose to the tank, leak free. -
Fuel Properties Comparison
Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb. -
Matthew Huber
Journal of American Studies http://journals.cambridge.org/AMS Additional services for Journal of American Studies: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Refined Politics: Petroleum Products, Neoliberalism, and the Ecology of Entrepreneurial Life MATTHEW HUBER Journal of American Studies / Volume 46 / Special Issue 02 / May 2012, pp 295 312 DOI: 10.1017/S0021875812000126, Published online: 30 May 2012 Link to this article: http://journals.cambridge.org/abstract_S0021875812000126 How to cite this article: MATTHEW HUBER (2012). Refined Politics: Petroleum Products, Neoliberalism, and the Ecology of Entrepreneurial Life. Journal of American Studies, 46, pp 295312 doi:10.1017/S0021875812000126 Request Permissions : Click here Downloaded from http://journals.cambridge.org/AMS, IP address: 92.28.162.159 on 07 Jan 2013 Journal of American Studies, (), , – © Cambridge University Press doi:./S Refined Politics: Petroleum Products, Neoliberalism, and the Ecology of Entrepreneurial Life MATTHEW HUBER Oil is often thought of as a sole commodity with singular powers to shape geopolitics, economic development, and environmental change. Yet the complex hydrocarbon assemblage of crude oil is only commodified through the refining process, which produces a multiplicity of products (e.g. gasoline, heating oil, petrochemicals). In this paper, I argue that petroleum products provide the supplementary materiality for a neoliberal cultural politics of “life.” In the first section, drawing from Gramsci and Foucault, I argue that the popular basis of neoliberal hegemony is rooted in a cultural politics of “entrepreneurial life” that accompanied increasing suburbaniza- tion, single-family homeownership and widespread automobility in the post-World War II United States. -
Biodiesel Blending in Home Heating Oil a Smart Choice for New York
Biodiesel Blending in Home Heating Oil A Smart Choice for New York A Policy Paper New York Public Interest Research Group Fund June, 2014 Acknowledgements This report was written by Joseph Stelling of the New York Public Interest Research Group Fund. The author thanks Executive Director Rebecca Weber, Legislative Director Blair Horner, and Special Projects Director Diana Fryda for their significant contributions to this report. The New York Public Interest Research Group Fund (NYPIRG) is a non-partisan, not-for-profit organization working to cultivate a broad, solution-centered understanding of critical matters affecting the environment, health, democratic institutions and quality of life among New York State’s residents. NYPIRG’s unique approach to public engagement relies upon a solid foundation of research, data analysis, published reports and earned media alongside a rooted, organized presence in communities across New York State earned through decades of face-to- face community outreach, activist recruitment, advocacy training, coalition work, event organizing and voter empowerment. ©2014, NYPIRG You can download the report by going to the NYPIRG website: www.nypirg.org Blending Biodiesel in Home Heating Oil: A Smart Choice for New York Executive Summary This report explores the potential benefits of blending biodiesel into heating oil for New York State. The findings of this report indicate that standardized blending of modest amounts of biodiesel into home heating oil across New York would result in substantial environmental, public health, consumer and economic benefits. Key Findings: 1) Biodiesel blending in heating oil offers reductions in harmful emissions such as particulate matter, sulfates and air toxics, significant lifecycle reductions in climate- altering carbon emissions, and increased sustainability in energy practices. -
14. Diesel Fuel Standard and Compliance Program
California’s Diesel Fuel Program November 29, 2018 1 Oil & Gas and GHG Mitigation Branch California Air Resources Board (CARB) 2 California Diesel Fuel Requirements ´ASTM D975, Standard Specification for Diesel Fuel Oils (enforced by the California Department of Agriculture’s Division of Measurement Standards) ´The California Diesel Fuel Regulations ´13 CCR 2281, Sulfur Content of Diesel Fuel ´13 CCR 2282, Aromatic Hydrocarbon Content of Diesel Fuel ´13 CCR 2293, et seq., Commercialization of Alternative Diesel Fuel 3 ASTM D975 - 2018, Standard Specification for Diesel Fuel Oils, Grade No. 2-D, S15 ´Flash Point, minimum, 52 °C (126 °F) ´Kinematic Viscosity at 40 °C, 1.9 - 4.1 mm2/s ´Cetane Number, minimum, 40 ´Cetane Index, minimum, or Aromaticity, maximum, 40 or 35 percent by volume ´Lubricity, High-Frequency Reciprocating Rig (HFRR), at 60 °C, maximum, 520 microns ´Conductivity, minimum, 25 pS/m (10-12 ohm-1m-1) 4 13 CCR 2281, Sulfur Content of Diesel Fuel ´Sulfur content maximum of 15 ppmw (mg/kg) ´Applicable to every gallon of vehicular and non-vehicular diesel fuel sold or supplied in California ´Enforced at all points of storage and distribution in California, from production or importation to dispensing 13 CCR 2282, Aromatic Content of 5 Diesel Fuel ´Aromatic hydrocarbon (AHC) content maximum of 10 percent by volume, or ´Certified emission-equivalent formulation established by engine emission testing, or ´Designated equivalent limits: ´AHC content, maximum, 21.0 percent by weight ´Polycyclic aromatic hydrocarbon (PAH) content, -
A Historical Geography of Natural Gas and the Capitalist State in an Age of Climate Change
Syracuse University SURFACE Dissertations - ALL SURFACE December 2018 Gaseous State: A Historical Geography of Natural Gas and the Capitalist State in an Age of Climate Change Carlo Sica Syracuse University Follow this and additional works at: https://surface.syr.edu/etd Part of the Social and Behavioral Sciences Commons Recommended Citation Sica, Carlo, "Gaseous State: A Historical Geography of Natural Gas and the Capitalist State in an Age of Climate Change" (2018). Dissertations - ALL. 956. https://surface.syr.edu/etd/956 This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact [email protected]. Abstract In the 1930s U.S., a set of social forces and crises pushed forward state energy regulation. As states struggle to end greenhouse-gas emissions from fossil fuels, the threat of climate change demands new explanations for how energy policy emerges. In this dissertation, I explain the period of U.S. natural gas regulation between 1938 and 1978 from critical political economy and Marxist state theoretical perspectives. My main conclusion is that the capitalist state stabilizes markets for energy to serve capital with an auxiliary means of production. Based on that conclusion, I recommend that Marxist state theory be class-centered, i.e., recognize that the agency of mass movements and state workers to reform the capitalist state is structurally constrained by the state’s role of maintaining capitalist class relations. In the introduction I explain how it is important to consider capital-gas relations because natural gas is a greenhouse gas and burning of gas by capital is causing climate change. -
Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M
Southern Illinois University Carbondale OpenSIUC Presentations Department of Automotive Technology 3-7-2019 Waste Motor Oil (WMO) to Diesel Fuel Project Blaine M. Heisner Southern Illinois University Carbondale, [email protected] Follow this and additional works at: https://opensiuc.lib.siu.edu/auto_pres PowerPoint slides from a technical presentation at the Illinois College Automotive Instructors Association Spring 2019 conference. Recommended Citation Heisner, Blaine M. "Waste Motor Oil (WMO) to Diesel Fuel Project." (Mar 2019). This Article is brought to you for free and open access by the Department of Automotive Technology at OpenSIUC. It has been accepted for inclusion in Presentations by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Waste Motor Oil (WMO) to Diesel Fuel Project -Update Spring 2019- SIUC Automotive Technology Department Blaine Heisner AJ McNay Jake Lichter Colton Karas Ryan Mukherjee WMO? (Waste Motor Oil!) • What is in WMO? • Total amount of WMO generated • Petroleum mainly… • 1.3B gallons annually in U.S. • Crankcase oil, transmission fluid, • Only 60% of oil sold is collected power steering fluid, brake fluid, axle grease, gear oil, compressor oil • However… • What happens to WMO • Dumped • Metal, dirt, leaves, additives, coolant, brake clean, solvent, dead • Burned in open fires (brush piles) animals, fuel, chew spit, water, • Collected with a fee (or payment) benzene, etc… • Dropped off at a collection area • Industrial burners (energy gen.) • WMO Generators • Re-refined into new products • Repair shops, dealerships, public and • Lube, fuel, asphalt, etc… private fleets, personal residences, schools, trucking companies, farms Cost/Value of WMO • “The recent softness in crude oil markets, along with the associated declines in fuel pricing, have decreased the value of our recycled fuel oil (RFO) and other products. -
What's the Difference Between Gasoline, Kerosene, Diesel, Etc?
What's the difference between gasoline, kerosene, diesel, etc? Browse the article What's the difference between gasoline, kerosene, diesel, etc? The "crude oil" pumped out of the ground is a black liquid called petroleum. This liquid contains aliphatic hydrocarbons, or hydrocarbons composed of nothing but hydrogen and carbon. The carbon atoms link together in chains of different lengths. It turns out that hydrocarbon molecules of different lengths have different properties and behaviors. For example, a chain with just one carbon atom in it (CH4) is the lightest chain, known as methane. Methane is a gas so light that it floats like helium. As the chains get longer, they get heavier. The first four chains -- CH4 (methane), C2H6 (ethane), C3H8 (propane) and C4H10 (butane) -- are all gases, and they boil at -161, -88, -46 and -1 degrees F, respectively (-107, -67, -43 and -18 degrees C). The chains up through C18H32 or so are all liquids at room temperature, and the chains above C19 are all solids at room temperature. So what's the real chemical difference between gasoline, kerosene and diesel? It has to do with their boiling points. Carbon Chains in Petroleum Products The different chain lengths have progressively higher boiling points, so they can be separated out by distillation. This is what happens in an oil refinery -- crude oil is heated and the different chains are pulled out by their vaporization temperatures. (See How Oil Refining Works for details.) The chains in the C5, C6 and C7 range are all very light, easily vaporized, clear liquids called naphthas. -
Making Your Own Fuel from Vegetable Oil Can Be Easy, Cost- Effective, And
Joshua & Kaia Tickell ©1999 Joshua & Kaia Tickell Restaurant fryer filters are available at restaurant supply stores and are excellent for filtering food particles out of used cooking oil. aking your own fuel from Grow Your Fuel We produce a large quantity of used vegetable oil in the vegetable oil can be easy, cost- United States, but there is an oilseed crop you can effective, and environmentally grow no matter where you live. The possibilities include M coconut, soybean, canola (rapeseed), sunflower, beneficial. What makes this fuel even safflower, corn, palm kernel, peanut, jatropha, and more attractive is that you can make it hundreds more. To learn which vegetable oil crop is best suited for your area, contact your state’s office of from the waste vegetable oil produced agriculture, the agriculture department of a local in the United States every year, which university, or talk to local farmers. amounts to more than three billion One of the crops with the highest yield of oil per acre is gallons. With a bit of know-how and canola. From just one acre of canola, you can produce 100 gallons (379 l) of vegetable oil. The most common persistence, you can run any diesel oilseed crop in the U.S. is soybeans, which produce 50 engine on vegetable oil. gallons (189 l) of vegetable oil per acre. Growing your own oilseed crop has an added bonus. Only diesel engines can run on vegetable oil-based The meal that is separated from the oil is an excellent fuels. This means that any engine that has spark plugs source of protein. -
What Is Bioheat?
What is Bioheat? 1) Is Bioheat the same as biodiesel, or visa versa? NO. Biodiesel is the term for the pure biodiesel, B100. Bioheat is conventional heating oil containing biodiesel. 2) What is biodiesel? Biodiesel is a clean burning alternative fuel produced from vegetable oils and animal fats through a chemical reaction and meeting ASTM D 6751. Biodiesel contains no petroleum, but it can be blended at any level with heating oil. It can be used in home heating oil systems safely with no modifications to the fuel tanks, pumps or burners in concentrations up to 20% biodiesel with only minimal precautions (see conditions for use section). For higher Bioheat blends than 20% biodiesel, special precautions are needed (see materials compatibility). Pure biodiesel is also referred to as B100. In the transportation fuel market where ASTM D 975 is the standard for petroleum-based diesel, biodiesel blends are designated "BXX", where XX is the volume percent of biodiesel meeting ASTM D 6751 with conventional petrodiesel. B20, which is 20% biodiesel and 80% petrodiesel, is a common blend for fleets and buses. The heating oil market is focusing on Bioheat, which is a 2 to 20% blend of biodiesel with heating oil. 3) Is biodiesel the same thing as raw vegetable oil, cooking oil or animal fat? Can those materials be blended with heating oil to create Bioheat? NO. Biodiesel is produced from raw vegetable oils or animal fats, but the oil or fat must go through the chemical reaction (called transesterification) to make it into biodiesel and be tested to make sure it meets D 6751 before it is blended with heating oil. -
AP-42, Vol. I, 3.3: Gasoline and Diesel Industrial Engines
3.3 Gasoline And Diesel Industrial Engines 3.3.1 General The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors. 3.3.2 Process Description All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated. There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI).