Neo-Nagelian Reduction

Total Page:16

File Type:pdf, Size:1020Kb

Neo-Nagelian Reduction Neo-Nagelian Reduction A Statement, Defence, and Application. Foad Dizadji-Bahmani A thesis submitted to the Department of Philosophy, Logic and Scientific Method of the London School of Economics and Political Science for the degree of Doctor of Philosophy, July 2011. Declaration I certify that the thesis I have presented for examination for the PhD degree of the London School of Economics and Political Science is solely my own work. The copyright of this thesis rests with the author. Quotation from it is permitted, provided that full acknowledgement is made. This thesis may not be reproduced without the prior written consent of the author. I warrant that this authorization does not, to the best of my belief, infringe the rights of any third party. Foad Dizadji-Bahmani 2 Abstract The thesis proposes, defends, and applies a new model of inter-theoretic reduction, called \Neo-Nagelian" reduction. There are numerous accounts of inter-theoretic reduction in the philosophy of science literature but the most well-known and widely-discussed is the Nagelian one. In the thesis I identify various kinds of problems which the Nagelian model faces. Whilst some of these can be resolved, pressing ones remain. In lieu of the Nagelian model, other models of inter-theoretic reduction have been proposed, chief amongst which are so-called \New Wave" models. I show these to be no more adequate than the original Nagelian model. I propose a new model of inter-theoretic reduction, Neo-Nagelian reduction. This model is structurally similar to the Nagelian one, but differs in substantive ways. In particular I argue that it avoids the problems pertaining to both the Nagelian and New Wave models. Multiple realizability looms large in discussions about reduction: it is claimed that multiply realizable properties frustrate the reduction of one theory to another in various ways. I consider these arguments and show that they do not undermine the Neo-Nagelian of reduction of one theory to another. Finally, I apply the model to statistical mechanics. Statistical mechanics is taken to be a reductionist enterprise: one of the aims of statistical mechanics is to reduce thermodynamics. Without an adequate model of inter-theoretic reduction one cannot assess whether it succeeds; I use the Neo-Nagelian model to critically discuss whether it does. Specifically, I consider two very recent derivations of the Second Law of thermodynamics, one from Boltzmannian classical statistical mechanics and another from quantum statistical mechanics. I argue that they are partially successful, and that each makes for a promising line of future research. 3 Outline Acknowledgements 9 Thesis Overview 10 1 Neo-Nagelian Reduction 13 2 New Wave Reductionism 61 3 Multiple Realizability 86 4 Neo-Nagelian Reduction and CSM 119 5 Neo-Nagelian Reduction and QSM 178 Thesis Conclusions 201 Bibliography 205 4 Contents Acknowledgements 9 Thesis Overview 10 1 Neo-Nagelian Reduction 13 1.1 Chapter 1 Introduction . 13 1.2 The External Problem and Methodology . 14 1.2.1 The External Problem . 14 1.2.2 A Better Methodology . 19 1.2.3 Prolegomenon . 21 1.3 Nagelian Reduction . 23 1.3.1 Nagel's Model of Reduction . 23 1.3.2 Nagelian Reduction: Internal Problems . 24 1.4 Neo-Nagelian Reduction . 31 1.4.1 Derivation of the Boyle-Charles Law - A Sketch . 31 1.4.2 Overview of Neo-Nagelian Reduction . 33 1.4.3 Explanation . 38 1.4.4 Pluro-Particularism . 45 1.4.5 Warrant For Auxiliary Assumptions . 52 1.4.6 Warrant For Bridge-Laws . 55 1.4.7 Ontological Simplification . 57 1.5 Chapter Summary and Outlook . 59 2 New Wave Reductionism 61 2.1 Chapter 2 Introduction . 61 2.2 Churchland's New Wave Model of Reduction . 63 2.2.1 Churchland's Wave . 63 5 2.2.2 Problems with Churchland's Wave . 65 2.3 The Hooker-Bickle New Wave Model of Reduction . 71 2.3.1 Hooker's Insights . 72 2.3.2 Bickle's Formal Model . 78 2.4 Chapter Summary . 85 3 Multiple Realizability 86 3.1 Chapter 3 Introduction . 86 3.2 Fodor's Argument Against Reductionism . 90 3.2.1 Stage-Setting . 91 3.2.2 The `Modal' Argument Against Reductionism . 92 3.2.3 The Main Argument Against Reductionism . 94 3.2.4 Fodor's Argument Repudiated . 100 3.3 Multiple Realizability and Explanation . 104 3.3.1 MR Does Not Undermine Explanation . 105 3.3.2 Possible MR Does Not Undermine Explanation . 106 3.3.3 Simplicity and Descriptive Richness . 107 3.4 Multiple Realizability and Ontological Simplification . 109 3.4.1 Simplistic Ontological Simplification . 110 3.4.2 Local Simplistic Ontological Simplification . 111 3.4.3 `Radical' MR . 113 3.4.4 Ontological Simplification Revisited . 116 3.5 Chapter Summary . 118 4 Neo-Nagelian Reduction and CSM 119 4.1 Chapter 4 Introduction . 119 4.2 Thermodynamics . 120 4.2.1 Axiomatic Laws . 121 4.2.2 Constitutive Laws . 128 4.3 The Kinetic Theory of Gases . 129 4.3.1 Deriving the Boyle-Charles Law . 130 4.3.2 A Rational Reconstruction . 131 4.4 Is Temperature Mean Kinetic Energy? . 138 4.4.1 A Priori Arguments for Identity . 139 4.4.2 Conceptual Arguments Against Identity . 142 4.4.3 Ontological Simplification: The Upward Path . 150 6 4.5 Framework for Classical Statistical Mechanics . 151 4.6 Gibbsian Statistical Mechanics . 153 4.6.1 Re-deriving the Boyle-Charles Law . 154 4.6.2 Gibbsian Statistical Mechanics: Reduction? . 159 4.7 Boltzmannian Statistical Mechanics . 162 4.7.1 Reducing the 2nd Law . 162 4.7.2 The Boltzmannian Framework . 166 4.7.3 The Ergodic Program . 168 4.7.4 Solving Problems with the Ergodic Program . 170 4.7.5 Prospects and Limitations . 177 4.8 Chapter Summary . 177 5 Neo-Nagelian Reduction and QSM 178 5.1 Chapter 5 Introduction . 178 5.2 Albertian and H&Sian QSM . 179 5.3 Aharonovian QSM . 183 5.4 NN Reduction and Aharonovian QSM . 187 5.4.1 Representing Equilibrium . 188 5.4.2 State-averaging and Typicality . 191 5.4.3 Warrant in Aharonovian QSM . 194 5.5 Interventionism . 197 5.5.1 Incredulity . 198 5.5.2 Deus Ex Machina . 198 5.5.3 All for Nothing . 199 5.6 Chapter Summary . 200 Thesis Conclusions 201 Bibliography 205 7 Acknowledgements I thank Roman Frigg and Mikl´osR´edei for their patient and supportive super- vision. Mikl´oshas been a source of inspiration and I learned much from him. I am particularly indebted to Roman. He has provided many insightful comments on my writings, explained important ideas to me, and guided me through this process. I am extremely grateful to them both. I thank all the staff and students at the Department of Philosophy, Logic and Scientific Method at the London School of Economics and Political Science, for creating the excellent academic atmosphere here. In particular, amongst the fac- ulty, I thank Jason McKenzie Alexander, Luc Bovens, Nancy Cartwright, David Makinson, Katie Steele, Max Steuer, Charlotte Werndl, and John Worrall. In particular, amongst the PhD students, I thank Bengt Autzen and Chris Thomp- son, my year-mates, Sheldon Steed, Mauro Rossi, Marilena Di Bucchianico, Alice Obrecht, Ittay Nissan, Dean Peters, Ben Ferguson, Susanne Burri, and Seamus `LATEX' Bradley. I received financial support from the LSE Research Studentship Scheme and a desk from the CPNSS. The latter allowed me to benefit from stimulating con- versations with Isabel Guerra, I~naki San Pedro, and Wolfgang Pietsch, amongst many others. Most importantly it allowed me to share many a great day with Conrad Heilmann. I thank James Ladyman, Stuart Presnell, and Ioannis Votsis for encouraging me to pursue a PhD, and Jeremy Howick and Matt W. Parker for seeing me through. Special thanks go to Phillip Thonemann for introducing me to philoso- phy. I thank all my friends and family for putting up with me whilst I wrote this thesis. Special thanks to my Berlin family, Ayshea, Bex, Lucy, Susannah, Ula, and Mimi. I would not have completed this thesis without Emma, Henry, and Shiv. I am sorry that my father is not here to see me get this far; from what I understand he would have been proud. I thank him, in so far as that makes sense, for being a source of inspiration and strength to my mother, even after all these years. Above all I thank my mother, Farideh Dizadji. She has sacrificed so very much for me, and, despite incredible adversity, has provided me with all the intellectual and emotional support I needed. I owe her everything. 8 For Farideh Dizadji. 9 Thesis Overview In this thesis, I propose, defend, and apply a new model of intertheoretic reduc- tion. I call it the Neo-Nagelian model of intertheoretic reduction. Let us idealise somewhat and suppose that any model of intertheoretic reduc- tion consists of a set of necessary and sufficient criteria for one theory to reduced to another. I make the distinction between two kinds of problems pertaining to any such model: internal and external. By internal problems I mean those to do with how clear and precise the criteria are, whether the criteria are consistent with each other, and whether they afford the putative aims of reduction. Con- trast this with the external problem. The external problem is the problem of establishing what the aims of reduction are, and whether the criteria themselves are the `right' ones. That is, whether in meeting the criteria, one theory does reduce to another. The failure to recognise this distinction has been detrimental to debates about reduction, or so I contend. To solve the external problem, I propose the following: abstract a general model of reduction from a rational reconstruction of the derivation of the Boyle- Charles of thermodynamics from statistical mechanics.
Recommended publications
  • PHIL 145(002) Spring 2008
    Please note: This is only a provisional draft of the course outline. It is intended to give you a sense of what the course will be about. Readings and important course dates may change before the semester begins. PHIL 220 A01 - Fall 2018 Introduction to Philosophy of Science Instructor: Eric Hochstein CRN: 12520 Time: Tuesday/Wednesday/Friday 11:30 AM – 12:20 PM Place: Clearihue Building C112 Office Hours (in Clearihue B330): Wednesday, 3:00-5:00 pm; and by appointment Email: [email protected] Description: Science is considered to be our best and most effective way of learning about the world. But what exactly differentiates science from non-science, and what are its limits? In this course, we will explore fundamental philosophical questions regarding the nature of science, and how it relates to more traditional philosophical questions regarding metaphysics and epistemology. More specifically, we will explore topics like: what is the demarcation between science from non-science? Does science get closer to truth as it progresses? Can the theories of one science (e.g. psychology) be reduced to theories of another (e.g. neuroscience)? Structure: The course comprises three lectures (50min) per week, the contents of which will be based on the course readings. The course will proceed primarily through lectures and discussions. Readings for the class will all be uploaded onto the course website. Evaluation: The course will be graded as follows: • Attendance and Class Participation, worth 10% (you can miss 5 classes with no penalty. Each additional class missed will be -1% to your attendance/participation grade).
    [Show full text]
  • On the Unity and Continuity of Science: Structural Realism's Underdetermination Problem and Reductive Structuralism's Solution
    Georgia State University ScholarWorks @ Georgia State University Philosophy Theses Department of Philosophy 8-12-2014 On the Unity and Continuity of Science: Structural Realism's Underdetermination Problem and Reductive Structuralism's Solution Anthony Blake Nespica Follow this and additional works at: https://scholarworks.gsu.edu/philosophy_theses Recommended Citation Nespica, Anthony Blake, "On the Unity and Continuity of Science: Structural Realism's Underdetermination Problem and Reductive Structuralism's Solution." Thesis, Georgia State University, 2014. https://scholarworks.gsu.edu/philosophy_theses/151 This Thesis is brought to you for free and open access by the Department of Philosophy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Philosophy Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. ON THE UNITY AND CONTINUITY OF SCIENCE: STRUCTURAL REALISM’S UNDERDETERMINATION PROBLEM AND REDUCTIVE STRUCTURALISM’S SOLUTION by ANTHONY BLAKE NESPICA Under the Direction of Daniel A. Weiskopf ABSTRACT Russell’s claim that only structural knowledge of the world is possible was influentially criticized by Newman as rendering scientific discoveries trivial. I show that a version of this crit- icism also applies to the “structural realism” more recently advocated by Worrall, which requires continuity of formal structure between predecessor and successor scientific theories. The prob- lem is that structure, in its common set-theoretical construal, is radically underdetermined by the entities and relations over which it is defined, rendering intertheoretic continuity intolerably cheap. I show that this problem may be overcome by supplementing the purely formal relation of intertheoretic isomorphism with the semiformal “Ontological Reductive Links” developed by Moulines and others of the German “structuralist” approach to the philosophy of science.
    [Show full text]
  • Who's Afraid of Nagelian Reduction?
    Who's Afraid of Nagelian Reduction? Foad Dizadji-Bahmani Roman Frigg Stephan Hartmann∗ Abstract We reconsider the Nagelian theory of reduction and argue that, contrary to a widely held view, it is the right analysis of intertheoretic reduction, since the alleged difficulties of the theory either vanish upon closer inspection or turn out to be substantive philosophical questions rather than knock-down arguments. 1 Introduction The purpose of this paper is to examine synchronic intertheoretic reduction, i.e. the reductive relation between pairs of theories which have the same (or largely overlapping) domains of application and which are simultaneously valid to various extents.1 Examples of putative synchronic intertheoretic re- duction are the reduction of chemistry to atomic physics, rigid body mechan- ics to particle mechanics, and thermodynamics (TD) to statistical mechanics (SM). The central contention of this paper is that a Nagelian account of reduction is essentially on the right track: With some modifications and qualifications ∗Authors are listed alphabetically; the paper is fully collaborative. To contact the authors write to [email protected], [email protected], or [email protected]. 1There are, of course, other types of reductive relations, most notably diachronic theory reductions, an example of which is Newtonian and relativistic mechanics. See Nickles (1975). For an in-depth discussion of such cases, see Batterman (2002). 1 that account tells the right story about how synchronic intertheoretic reduc- tion works. For reasons that will become clear as we proceed, we refer to this modified and qualified account as the Generalised Nagel-Schaffner Model of Reduction (GNS).
    [Show full text]
  • Holism and Reductionism in Biology and Ecology the Mutual Dependence of Higher and Lower Level Research Programmes
    RIJKSUNIVERSITEIT GRONINGEN Holism and Reductionism in Biology and Ecology The mutual dependence of higher and lower level research programmes Proefschrift ter verkrijging van het doctoraat in de Wijsbegeerte aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. van der Woude, in het openbaar te verdedigen op donderdag 9 april 1998 des namiddags te 4.15 uur door Richard Christiaan Looijen geboren op 27 augustus 1956 te Ifar (West Irian) Eerste promotor: Prof. dr. T.A.F. Kuipers Tweede promotor: Prof. dr. J. van Andel HOLISM AND REDUCTIONISM IN BIOLOGY AND ECOLOGY The mutual dependence of higher and lower level research programmes © 1998, Rick Looijen Voorkant: het verhaal van de vier blinden en de olifant; ontwerp: Joan Looijen, Rick Looijen, Ubel Smid CONTENTS ACKNOWLEDGEMENTS .......................................... 11 CHAPTER 1 GENERAL INTRODUCTION ....................................... 13 1.1 The holism-reductionism dispute ....................... 13 1.2 Division of the book ............................... 15 CHAPTER 2 HOLISM AND REDUCTIONISM IN BIOLOGY .......................... 23 2.1 Introduction ..................................... 23 2.2 The reduction problem in biology ...................... 24 2.2.1 The hierarchical structure of nature ................ 24 2.2.2 Complex hierarchy ........................... 26 2.3 Epistemological aspects of the problem .................. 27 2.3.1 Reduction and the unity of science ............... 29 2.3.2 Autonomism versus provincialism ................. 29 2.4 Ontological aspects ................................ 30 2.4.1 Materialism and causal determinism ............... 30 2.4.2 Vitalism versus constitutive reductionism ............ 31 2.4.3 ’Ontological’ reductionism: atomism ............... 32 2.4.4 Ontological holism: emergentism and organicism ...... 33 2.5 Methodological aspects ............................. 35 2.6 Ethical aspects ................................... 36 2.7 Concluding remarks: radical, moderate and anti-reductionist research strategies ................................
    [Show full text]
  • Intertheoretic Relations and the Future of Psychology*
    INTERTHEORETIC RELATIONS AND THE FUTURE OF PSYCHOLOGY* ROBERT N. McCAULEYt Department of Philosophy Emory University In the course of defending both a unified model of intertheoretic relations in science and scientific realism, Paul Churchland has attempted to reinvigorate eliminative materialism. Churchland's eliminativism operates on three claims: (1) that some intertheoretic contexts involve incommensurable theories, (2) that such contexts invariably require the elimination of one theory or the other, and (3) that the relation of psychology and neuroscience is just such a context. I argue that a more detailed account of intertheoretic relations, which distin- guishes between the relations that hold between successive theories at a partic- ular level of analysis over time and those that hold between theories at different levels of analysis at the same time, offers grounds for denying Churchland's second and third claims and, therefore, undermines his eliminativism. The paper concludes by suggesting why it is, nonetheless, not unreasonable, given this more detailed model of intertheoretic relations, to expect the eventual elimina- tion of common sense psychology. Eliminative materialism has enjoyed a resurgence recently in the work of Paul Churchland(for example, 1979, 1981, 1984) who argues for that view in the course of defending both a unified model of intertheoretic relations and the minimalist metaphysics of a scientific realist. His ar- guments, no doubt, offer solace to many scientifically minded philoso- phers and philosophically minded scientists who are generally sympa- thetic to the eliminativist program but who have been unwilling to abide the recent anti-realism of its first generation defenders, Richard Rorty and Paul Feyerabend.
    [Show full text]
  • 0-262-53085-6Churchland , Patricia S.Neu Roph I Losophy
    Neurophilosophy: Toward a Unified Science of the Mind‑Brain Patricia Smith Churchland MITPress ~~~~Churchland,Neu0-262-53085-6rophilosophy Patricia S. Eleventhprinting, 2000 First MIT Presspaperback edition, 1989 @ 1986by The MassachusettsInstitute of Technology All rights reserved . No part of this book may be reproduced in any form by any electronic or mechanical means ( including photocopying , recording , or information storage and retrieval ) without permission in writing from the publisher . Printed and bound in the United States of America Library of Congress Cataloging - in - Publication Data Churchland , Patricia Smith . Neurophilosophy : toward a unified science of the mind - brain . ( Computational models of cognition and perception ) " A Bradford book ." Bibliography : p . Includes index . 1 . Neuropsychology - Philosophy . 2 . Mind - brain identity theory . 3 . Neurology - Philosophy . I . Title . II . Series . [ DNLM : 1 . Neurology . 2 . Neuropsychology . WL 100 C562n ] QP360 . C49 1986 152 85 - 23706 ISBN 0-262-03116-7 (hardcover) 0-262-53085-6 (paperback) Chapter 7 Reduction and the Mind -Body Problem . [metaphysical systems] are the only means at our disposal for examining those parts of our knou1ledgewhich have already become observational and are therefore inaccessible to a criticism lion the basis of observation. II Paul K. Feyerabend, 1963 7.1 Introduction In concluding the last chapter, I foreshadowed the implications for philosophy of mind of the major revisions in the platform features of logical empiricism . These changes permitted the development of a naturalistic conception that envisioned research on the mind -brain as an empiricalinvestigation of the nature of mental states and processes, their causes, and their effects. Naturalism follows hard upon the heels of the understanding that there is no first philosophy .
    [Show full text]
  • Materialism: Metaphysics and Methodology
    MATERIALISM: METAPHYSICS AND METHODOLOGY by ADAM JOHN CONSTABARIS B.A., The University of British Columbia, 1993 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS in THE FACULTY OF GRADUATE STUDIES (Department of Philosophy) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA August 1995 © Adam John Constabaris, 1995 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of T^'toSe pK^ The University of British Columbia Vancouver, Canada Date DE-6 (2/88) 11 Abstract In contemporary discussions of materialism, the term "reductionism" is used in several senses. First, I distinguish materialism, the metaphysical claim that "everything is physical" from physicalism, which is, broadly speaking, a research strategy that gives some sort of privilege to physics. I discuss two theses commonly associated with materialism, the view that the natural world is divided into levels corresponding to the various special sciences, and the claim that physics is "causally complete". In the second chapter, I discuss reductionism in the sense in which that term applies to empiricists who espoused a doctrine known as "the Unity of Science".
    [Show full text]
  • Reduction and Emergence in the Physical Sciences: Some Lessons from the Particle Physics–Condensed Matter Physics Debate
    Reduction and Emergence in the Physical Sciences: Some Lessons from the Particle Physics–Condensed Matter Physics Debate Don Howard Department of Philosophy and History and Philosophy of Science Graduate Program University of Notre Dame Whence, then, do my errors arise? Only from the fact that the will is much more ample and far- reaching than the understanding, so that I do not restrain it within the same limits but extend it even to those things which I do not understand. Being by its nature indifferent about such matters, it very easily is turned aside from the true and the good and chooses the false and the evil. And thus it happens that I make mistakes and that I sin. René Descartes, Meditations on First Philosophy, Meditation Four, “Of the True and the False” Introduction: A Note of Caution The task that I set for myself today is a mundane philosophical one–getting clear about fundamental concepts, developing a taxonomy of viewpoints, assessing the validity of arguments for those views, and handicapping the odds for one or another of them to emerge triumphant. The arena is the much contested one of questions about reduction and emergence in the physical sciences, more specifically the relationship between particle physics and condensed matter physics. The main point that I wish to make is that we know so little about that relationship, and that what we do know strongly suggests that condensed matter phenomena are not emergent with respect to particle physics, that we should be wary of venturing hasty generalizations and of making premature extrapolations from physics to the biosciences, the neurosciences, and beyond.
    [Show full text]
  • Confirmation and the Generalized Nagel-Schaffner Model of Reduction
    Noname manuscript No. (will be inserted by the editor) Confirmation and the Generalized Nagel-Schaffner Model of Reduction A Bayesian Analysis Marko Teˇsi´c Forthcoming in Synthese Abstract In their 2010 paper, Dizadji-Bahmani, Frigg, and Hartmann (henceforth `DFH') argue that the generalized version of the Nagel-Schaffner model that they have developed (henceforth `the GNS') is the right one for intertheoretic reduction, i.e. the kind of reduction that involves theories with largely overlapping domains of application. Drawing on the GNS, DFH (2011) presented a Bayesian analysis of the confirmatory relation between the reduc- ing theory and the reduced theory and argued that, post-reduction, evidence confirming the reducing theory also confirms the reduced theory and evidence confirming the reduced theory also confirms the reducing theory, which meets the expectations one has about theories with largely overlapping domains. In this paper, I argue that the Bayesian analysis presented by DFH (2011) faces difficulties. In particular, I argue that the conditional probabilities that DFH introduce to model the bridge law entail consequences that run against the GNS. However, I also argue that, given slight modifications of the analysis that are in agreement with the GNS, one is able to account for these difficul- ties and, moreover, one is able to more rigorously analyse the confirmatory relation between the reducing and the reduced theory. Keywords Confirmation · Nagelian reduction · Thermodynamics and statistical mechanics · Bayesian network models 1 Introduction Synchronic intertheoretic reduction, that is, \the reductive relation between pairs of theories which have the same (or largely overlapping) domains of application and which are simultaneously valid to various extents," has been M.
    [Show full text]
  • On the Contrary: Chpt6
    This excerpt from On the Contrary. Paul M. Churchland and Patricia Smith Churchland. © 1999 The MIT Press. is provided in screen-viewable form for personal use only by members of MIT CogNet. Unauthorized use or dissemination of this information is expressly forbidden. If you have any questions about this material, please contact [email protected]. 6 Intertheoretic Reduction : A Neuroscientist 's Field Guide PaulM . Church landand PatriciaS . Church land Might psychology somedaybe reduced to (= exhaustively explained by) compu- tational neurobiology? Many still say no. We approach this question through a brief survey of some prominent intertheoretic reductions drawn from our scientific history. A general characterization of reduction is constructed from these, and some important philosophical and methodological lessonsare drawn. The five most popular ob;ections to the possibility of a neurobiological reduction of psychology are then addressedand defeated. " " Reductionism is a term of contention in academic circles. For some, it - connotes a right headed approach to any genuinely scientific field , an approach that seeks intertheoretic unity and real systematicity in the phenomena . It is.an approach to be vigorously pursued and defended. - For others, it connotes a wrong headed approach that is narrowminded and blind to the richness of the phenomena . It is a bullish " - " instance of nothing butery , insensitive to emergent complexity and - higher level organization . It is an approach to be resisted. One finds this latter reaction most often within the various social sciences, such as anthropology , sociology , and psychology . One finds the former attitude most often within the physical sciences, such as physics, chemistry , and molecular biology .
    [Show full text]
  • Philosophy's Movement Toward Cognitive Science
    Philosophy’s Movement Toward Cognitive Science By Dr. Charles Wallis Last revision: 4/7/2013 Chapter 6 Identity Theories 6.1 Introduction 6.2 Identity Theories: Type-Type Identity 6.2.1 Two Arguments For Type-Type Identity Theory 6.3 Identity Theories: Token-Token Identity 6.1 Introduction The last chapter and lecture traces the developments that lead to the semantic twist. Specifically, chapter five and the associated lectures outline how philosophers of mind alter their focus from formulating and defending various ontological frameworks to understanding the relationship between scientific theories of the mind and ordinary conceptions of the mind. The shift in emphasis comes in reaction to the dramatic advances in science, mathematics, logic, and especially psychology at the dawning of the 20th century. The emergence of logical empiricism as the predominant philosophy of science strongly shapes how philosophers understand the engine that drives the rapid advances in the sciences at the beginning of the 20th century. Specifically, the logical empiricists focus upon scientific categorizations. The doctrine of the verification theory of meaning postulates that categorizations drive scientific progress only when they get their meaning through operationalizations—through being tied to empirical phenomena through intersubjective procedures and observations. Likewise, intertheoretic reduction and the unity of science emphasize semantic reduction as the key element of intertheoretic equivalence. As a result, philosophers begin increasingly to think of theories not simply in terms of theoretical posits, but in terms of the relationships between categories of scientific theories and the terms of ordinary language and of perceptual experiences. After the semantic twist, therefore, most philosophers seek to understand how monistic physicalism can accommodate mental phenomena.
    [Show full text]
  • Ruthless Reductionism Or Multilevel Mechanisms?1
    Explaining the Brain: Ruthless Reductionism or Multilevel Mechanisms?1 Markus Eronen University of Osnabrück Institute of Cognitive Science [email protected] Abstract: Mechanistic explanation and metascientific reductionism are two recent and widely discussed approaches to explanation and reduction in neuroscience. I will argue that these are incompatible and that mechanistic explanation has a stronger case, especially when it is combined with James Woodward’s manipulationist model of causal explanation. 1. Introduction In this paper, I will compare and criticize two approaches to reduction and explanation in neuroscience: metascientific reductionism and mechanistic explanation. I will first show that the traditional models of intertheoretic reduction are unsuitable for neuroscience. Then I will compare John Bickle’s model of metascientific reductionism and Carl Craver’s model of mechanistic explanation, arguing that the latter has a stronger case, especially when supplemented with James Woodward’s interventionist account of causal explanation. 2. Intertheoretic reduction The development of intertheoretic models of reduction started in the middle of the 20th century, in the spirit of logical positivism. The ultimate goal was to show how unity of science could be attained through reductions. In the classic model (most importantly Nagel 1961, 336-397), reduction consists in the deduction of a theory to be reduced (T2) from a more fundamental theory (T1). Conditions for a successful reduction are that (1) we can connect the terms of T2 with the terms T1, and that (2) with the help of these connecting assumptions we can derive all the laws of T2 from T1. 1 This is the final draft of a paper that was presented at the 31st International Wittgenstein Symposium in Kirchberg am Wechsel, Austria, 10.-16.8.2008.
    [Show full text]