Biochemistry of the Eicosanoids: Cyclooxygenase and Lipoxygenase Products of Polyunsaturated Fatty Acids

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry of the Eicosanoids: Cyclooxygenase and Lipoxygenase Products of Polyunsaturated Fatty Acids Lipids in Modern Nutrition, edited by M. Horisberger and U. Bracco. Nestle Nutrition, Vevey/Raven Press, New York © 1987. Biochemistry of the Eicosanoids: Cyclooxygenase and Lipoxygenase Products of Polyunsaturated Fatty Acids Elisabeth Granstrom Department of Physiological Chemistry, Karolinska Institutet, Stockholm, Sweden Certain polyunsaturated fatty acids can be metabolized by oxygenation into a large family of biologically active substances, the so-called prostanoids or eicosa- noids. This family includes the prostaglandins, thromboxanes, prostacyclins, leu- kotrienes, lipoxins, and also a number of related mono-, di-, and trihydroxy com- pounds as well as epoxygenated fatty acids. Most of these substances are potent compounds and display a wide variety of effects in many biological systems. Among these are effects on blood pressure, smooth muscle contractility, kidney function, cyclic nucleotide levels, glandular excretion, hormone secretion, platelet aggregation, vessel tone, temperature regu- lation, lipolysis, chemotaxis, immune response, cell growth and differentiation, electrolyte and water balance, etc. In combination with the fact that the eicosa- noids are almost ubiquitous in the mammalian body, it is not surprising that these substances are supposed to be involved in many physiological as well as pathologi- cal conditions in the organism. Thus, altered eicosanoid levels are sometimes found to coincide with the appearance of certain symptoms, and normalization oc- curs upon successful treatment of the condition with drugs known to interfere with eicosanoid biosynthesis or metabolism. The major classes of eicosanoids will be described below, and some of their possible biological roles will be discussed. PRECURSOR FATTY ACIDS The probably most important precursor fatty acid in this field is arachidonic acid, 5,8,11,14-all-cw-eicosatetraenoic acid (20:4to6), which gives rise to prosta- glandins (PGs) and thromboxanes (TXs) of the 2-series and leukotrienes (LTs) of the 4-series (the figure indicates the number of double bonds in the product, see below). Other polyunsaturated fatty acids are however also of interest, namely 8,11,14-eicosatrienoic acid (dihomo-7-linolenic acid, 20:3«6), precursor of the 1-series of PGs and TXs and one 3-series of LTs; 5,8,11-eicosatrienoic acid, pre- 59 60 BIOCHEMISTRY OF EICOSANOIDS cursor of the "normal" 3-series of LTs; and 5,8,11,14,17-eicosapentaenoic acid (timnodonic acid, 20:5w3), which gives rise to the PGs and TXs of the 3-series as well as LTs of the 5-series. Recently, however, C22 fatty acids also have come into focus as precursors of correspondingly elongated PGs and TXs and possibly other products as well. For example, adrenic acid (22:4<D6) can be metabolized into biologically active dihomo-PGs. The oxygenation of docosapenta- and doco- sahexaenoic acids (22:5w6 and 22:6o)3) has also attracted attention recently. In general, the precursor fatty acid does not occur free in the unstimulated cell but is esterified to glycerophospholipids almost exclusively in the 2-acyl position. The release of the precursor is considered to be the rate-limiting step in the biosyn- thesis of PGs and related substances. This hydrolysis can be achieved by a phos- pholipase A2, or by phospholipase C and then by other lipases, depending on cell type, phospholipid category, and possibly other factors. After release, the parent fatty acid is metabolized via three different types of pathways. The best known of these is catalyzed by the enzyme fatty acid cycloox- ygenase and leads to the formation of prostaglandin endoperoxides, which in turn are the immediate precursors of prostaglandins, thromboxanes, and prostacyclins. Other metabolic oxygenations are catalyzed by various lipoxygenases. Several such enzymes with different positional specificity for the introduction of oxygen have been identified. The products of the lipoxygenase pathways include hydroper- oxy fatty acids, mono-, di-, and trihydroxy fatty acids, the leukotrienes and the recently discovered lipoxins. Finally, the fatty acid can also be metabolized by the action of various monooxygenases into wl or a>2 hydroxy acids or by epoxidation at the double bonds. Comparatively little is as yet known about the products of these latter pathways. For reviews on the release of the polyunsaturated fatty acids from their phospho- lipid precursors, see, e.g., refs. 1-3. PROSTAGLANDINS As indicated above, oxygenation can take place at many different positions of the fatty acid. In, for example, arachidonic acid, enzymatic oxygenation can occur at carbon-5, carbon-8, carbon-9, carbon-11, carbon-12, and carbon-15. In the best known metabolic pathway in this field, namely the cyclooxygenase pathway, the enzyme introduces oxygen at carbon-11 in a dioxygenase type reaction, and the resulting ll-peroxy compound then cyclizes to form a 9,11-endoperoxide structure (Fig. 1). Simultaneously, ring closure occurs between carbon-8 and carbon-12, the A14 cis double bond isomerizes to A13 trans, and another oxygen radical attacks at carbon-15. The resulting compound is the first product with the prostanoic acid skeleton (Fig. 2), and its systemic name is, when originating in arachidonic acid, 9a,lla-peroxido-15(5)-hydroperoxy-prosta-5-cw, 13-frans-dienoic acid (trivial name, prostaglandin G2, PGG2) (Fig. 1). The two remaining double bonds of ara- chidonic acid give rise to the name of the series of compounds originating in this parent molecule, namely the 2-series. The 1-series, originating in dihomo-7-lino- OH OH OH COOH Glutathione COOH COOH leukotriene B; CHCONHCH2COOH NHCOCH2CH2CHCOOH Leukotriene A; Leukotriene C4 JDehydrase 5-Lipoxygenase COOH COOH HOO 12-Lipoxygenase 15-Lipoxygenase 12-Hydroperoxy- OOH eicosatetraenoic acid 15-Hydroperoxy- eicosatetraenoic acid Prostaglandin endoperoxide, PGH, q. 9" , COOH --COOH < ^^ HO' OH OH HO' 6H Prostaglandin E2 Thromboxane A2 Prostacyclin, PGI2 FIG. 1. Simplified scheme of arachidonic acid metabolism, showing some products of the cyclooxygenase and lipoxygenase catalyzed pathways. 62 BIOCHEMISTRY OF EICOSANOIDS -COOH 13 15 17 19 FIG. 2. Structures of prostanoic acid (left) and thrombanoic acid (right). lenic acid, analogously has only one double bond, A13 trans, and the 3-series from timnodonic acid has three double bonds, A5 cis, A13 trans, and A17 cis. Prostaglandin G2 is then converted into the corresponding 15-hydroxy com- pound by an endoperoxide peroxidase. This product is named prostaglandin H2 (PGH2; Fig. 1). So far it has not been possible to separate the two enzyme activi- ties, the cyclooxygenase and the peroxidase. It is thus currently believed that these two activities are catalyzed by the same enzyme, called prostaglandin endoperox- ide synthetase. The two endoperoxides are highly unstable in aqueous medium (half-life about 5 min at 37°C and pH 7.4) and are biologically very potent compounds. Among their biological activities are vasoconstriction, constriction of airways, and induc- tion of platelet aggregation. It is however uncertain how much of their registered effects can be attributed to the endoperoxides themselves, since they are rapidly converted into other compounds, both enzymatically by most tissues and nonenzy- matically. The earliest discovered products of endoperoxide metabolism are the "classi- cal" prostaglandins, PGE, PGF, and PGD (Fig. 1). In fact, these compounds of the 1-series were the first ones to be identified in this entire field (4). The prosta- glandins originating in arachidonic acid are PGE2 (9-keto-lla,15(5)-dihydroxy- prosta-5-cw, 13-frans-dienoic acid), PGF2c (9a,lla,15(S)-trihydroxyprosta-5-cw, 13-fran.s-dienoic acid) and PGD2 (ll-keto-9a,15(S)-dihydroxyprosta-5-c«,13- trans-dienoic acid, an isomer of PGE2) (Fig. 1). At least PGE2 and PGD2 are formed enzymatically from the endoperoxides by the action of specific isomerases. The enzymatic formation of PGF2c< is less certain: the existence of an endoperoxide reductase catalyzing this reaction has not been demonstrated unequivocally. All these three compounds can also be formed nonenzymatically during spontaneous degradation of the endoperoxides in aqueous solution. A large number of important biological activities have been attributed to the prostaglandins. PGE2, for example, is a potent vasodilator and lowers the blood pressure, inhibits the secretion of acid in the gastric mucosa, and also acts as a "cytoprotective" agent in the gastrointestinal tract; PGF2a is a powerful stimulant of the myometrium and also induces regression of the corpus luteum in many ani- mal species; and PGD2 is a potent inhibitor of platelet aggregation. For a recent review on the biochemistry and physiological effects of prostaglan- dins, see ref. 1. BIOCHEMISTRY OF EICOSANOIDS 63 THROMBOXANES Several other products are also formed from the endoperoxides. One biologi- cally very potent endoperoxide metabolite is formed in large amounts from plate- lets, lung, and spleen, and also by a number of other tissues but in smaller quanti- ties: thromboxane A (Fig. 1). The basic structure of this compound is different from that of the prostaglandins; i.e., it is not a derivative of prostanoic acid but of thrombanoic acid (Fig. 2): it contains an oxane-oxetane ring structure instead of the normal prostaglandin cyclopentane ring. The structures of the side chains are however identical with the prostaglandins. Thromboxane A2 from arachidonic acid is even more unstable (half-life about 30 sec) and biologically potent than its precursor endoperoxides. Among its activities are vasoconstriction, bronchocon- striction, and induction of platelet aggregation. The compound is rapidly hydro- lyzed into a biologically almost inactive substance, thromboxane B2 (TXB2). Thromboxane biosynthesis is usually detected either by rapid bioassay of the vaso- active or proaggregatory effects of TXA2 or by detection by other methods of its degradation product, TXB2. For a recent review of the thromboxanes, see, e.g., ref. 5. PROSTACYCLINS Another potent endoperoxide metabolite is found only in the 2- and 3-series of prostanoids, namely PGI. The structure of PGI2 from arachidonic acid ("prosta- cyclin") is 9-deoxy-6,9a-epoxy-ll,15-dihydroxyprosta-5,13-dienoic acid (Fig.
Recommended publications
  • 1Β IL-12 Receptor Viral Inflammation Are Mediated Through Macrophage
    IL-12 p40 Homodimer-Dependent Macrophage Chemotaxis and Respiratory Viral Inflammation Are Mediated through IL-12 Receptor β1 This information is current as of September 24, 2021. Tonya D. Russell, Qingyun Yan, Guangshun Fan, Anthony P. Khalifah, D. Keith Bishop, Steven L. Brody and Michael J. Walter J Immunol 2003; 171:6866-6874; ; doi: 10.4049/jimmunol.171.12.6866 Downloaded from http://www.jimmunol.org/content/171/12/6866 References This article cites 63 articles, 41 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/171/12/6866.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 24, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-12 p40 Homodimer-Dependent Macrophage Chemotaxis and Respiratory Viral Inflammation Are Mediated through IL-12 Receptor ␤11 Tonya D. Russell,* Qingyun Yan,* Guangshun Fan,* Anthony P.
    [Show full text]
  • Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 231 _____________________________ _____________________________ Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21 BY JOHAN BYLUND ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2000 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Pharmaceutical Pharmacology presented at Uppsala University in 2000 ABSTRACT Bylund, J. 2000. Cytochrome P450 Enzymes in Oxygenation of Prostaglandin Endoperoxides and Arachidonic Acid: Cloning, Expression and Catalytic Properties of CYP4F8 and CYP4F21. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from Faculty of Pharmacy 231 50 pp. Uppsala. ISBN 91-554-4784-8. Cytochrome P450 (P450 or CYP) is an enzyme system involved in the oxygenation of a wide range of endogenous compounds as well as foreign chemicals and drugs. This thesis describes investigations of P450-catalyzed oxygenation of prostaglandins, linoleic and arachidonic acids. The formation of bisallylic hydroxy metabolites of linoleic and arachidonic acids was studied with human recombinant P450s and with human liver microsomes. Several P450 enzymes catalyzed the formation of bisallylic hydroxy metabolites. Inhibition studies and stereochemical analysis of metabolites suggest that the enzyme CYP1A2 may contribute to the biosynthesis of bisallylic hydroxy fatty acid metabolites in adult human liver microsomes. 19R-Hydroxy-PGE and 20-hydroxy-PGE are major components of human and ovine semen, respectively. They are formed in the seminal vesicles, but the mechanism of their biosynthesis is unknown. Reverse transcription-polymerase chain reaction using degenerate primers for mammalian CYP4 family genes, revealed expression of two novel P450 genes in human and ovine seminal vesicles.
    [Show full text]
  • Eicosanoids Mediate Insect Nodulation Responses to Bacterial Infections (Cyclooxygenase/Lipoxygenase/Phospholipase A2/Manduca Sexta/Serratia Marcescens) JON S
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 12418-12422, December 1994 Physiology Eicosanoids mediate insect nodulation responses to bacterial infections (cyclooxygenase/lipoxygenase/phospholipase A2/Manduca sexta/Serratia marcescens) JON S. MILLER, TUANH NGUYEN, AND DAVID W. STANLEY-SAMUELSON* Insect Biochemistry/Physiology Laboratory, Department of Entomology, University of Nebraska, Lincoln, NE 68583-0816 Communicated by Wendell L. Roelofs, September 12, 1994 (receivedfor review August 11, 1993) ABSTRACT We propose that nodule formation is medi- inhibiting eicosanoid biosynthesis. On the basis of these ated by eicosanoids in insects. Nodulation is the temporally and findings, we proposed that eicosanoid products of the cyclo- quantitatively predominant cellular defense response to bac- oxygenase and lipoxygenase pathways are involved in insect terial infection in insects and other invertebrates. Inhibition of immune responses to bacterial infections. Because most of eicosanoid biosynthesis in larvae of the tobacco hornworn our experiments were done during the first hour postinfection Manduca sexta immediately prior to intrahemocoelic infections (PI), long before the appearance of antibacterial proteins in with the bacterium Serratia marcescens strongly reduced the insect hemolymph, we suggested that eicosanoids mediate nodulation response. Inhibition of eicosanoid biosynthesis also one or more hemocytic defense responses (6). reduced formation of cellular aggregates at 1 hr postinfection, This suggestion opens a crucial question: which
    [Show full text]
  • Engineering 3D Systems with Tunable Mechanical Properties to Mimic the Tumor Microenvironment Shalini Raj Unnikandam Veettil Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Engineering 3D systems with tunable mechanical properties to mimic the tumor microenvironment Shalini Raj Unnikandam Veettil Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Chemical Engineering Commons Recommended Citation Unnikandam Veettil, Shalini Raj, "Engineering 3D systems with tunable mechanical properties to mimic the tumor microenvironment" (2018). Graduate Theses and Dissertations. 17339. https://lib.dr.iastate.edu/etd/17339 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Engineering 3D systems with tunable mechanical properties to mimic the tumor microenvironment by Shalini Raj Unnikandam Veettil A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Chemical Engineering Program of Study Committee: Ian C Schneider, Major Professor Kaitlin Bratlie Michael Bartlett The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright © Shalini Raj Unnikandam Veettil, 2018. All rights reserved. ii DEDICATION This thesis is dedicated to my family and friends who have been a great source of support.
    [Show full text]
  • Bio-Organic Chemistry
    Bio-Organic Chemistry Objectives for Bio-Organic Chemistry Properly prepared students, in random order, will Page | 1 1) Be able to define and apply the concepts of Boiling, Freezing, Melting and Flash points; 2) Be able to list the color of light that solutions will absorb by virtue of the solution’s color, itself; 3) Be able to explain how UV spectroscopy works in a very simplistic manner; 4) Be able to explain how IR energy interacts with organic molecules in a very simplistic manner; 5) Be able to sketch examples of bond stretching and bending in organic molecules subjected to IR energy; 6) Be able to identify an IR spectrum; 7) Be able to identify an NMR spectrum; 8) Be able to list the nuclei that spin under NMR conditions; 9) Be able to explain, fundamentally, how proton-generated magnetic fields line up with external magnetic fields; 10) Be able to explain, illustrate and differentiate between parallel and anti-parallel alignment of protons with external magnetic fields; 11) Be able to identify “identical” and “non-identical” protons (“H’s”) on organic molecules; 12) Be able to identify primary, secondary and tertiary carbon and hydrogen atoms; 13) Be able to explain the NMR spectrum for ethyl alcohol within the scope of the course; 14) Be able to determine the ratio of protons (“H’s”) on different functional groups from NMR spectra; 15) Be able to explain roughly how MRI works on human diagnostics; 16) Be able to list 5 characteristics that differ between inorganic and organic compounds; 17) Be able to list 5 uses of organic
    [Show full text]
  • Lipoxygenase Inhibition Activity of Coumarin Derivatives—QSAR and Molecular Docking Study
    pharmaceuticals Article Lipoxygenase Inhibition Activity of Coumarin Derivatives—QSAR and Molecular Docking Study Melita Lonˇcari´c 1 , Ivica Strelec 1 , Valentina Pavi´c 2 , Domagoj Šubari´c 3, Vesna Rastija 3 and Maja Molnar 1,* 1 Faculty of Food Faculty Osijek, Josip Juraj Strossmayer University, 31000 Osijek, Croatia; [email protected] (M.L.); [email protected] (I.S.) 2 Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; [email protected] 3 Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; [email protected] (D.Š.); [email protected] (V.R.) * Correspondence: [email protected]; Tel.: +385-31-224-342 Received: 2 July 2020; Accepted: 15 July 2020; Published: 17 July 2020 Abstract: Lipoxygenases (LOXs) are a family of enzymes found in plants, mammals, and microorganisms. In animals and plants, the enzyme has the capability for the peroxidation of unsaturated fatty acids. Although LOXs participate in the plant defense system, the enzyme’s metabolites can have numerous negative effects on human health. Therefore, many types of research are searching for compounds that can inhibit LOXs. The best quantitative structure–activity relationship (QSAR) model was obtained using a Genetic Algorithm (GA). Molecular docking was performed with iGEMDOCK. The inhibition of lipoxygenase was in the range of 7.1 to 96.6%, and the inhibition of lipid peroxidation was 7.0–91.0%. Among the synthesized compounds, the strongest inhibitor of soybean LOX-3 (96.6%) was found to be 3-benzoyl- 7-(benzyloxy)-2H-chromen-2-one.
    [Show full text]
  • The Role of 5-Lipoxygenase in Pathophysiology and Management of Neuropathic Pain
    REVIEW ARTICLE THE ROLE OF 5-LIPOXYGENASE IN PATHOPHYSIOLOGY AND MANAGEMENT OF NEUROPATHIC PAIN Pascanus Lamsihar PT∗, Faldi Yaputra∗∗, Jimmy FA Barus4 and I Putu Eka Widyadharma∗∗,1 ∗Department of Neurology, Provincial Mental Hospital, West Borneo, Indonesia., ∗∗Department of Neurology, Faculty of Medicine, Udayana University-Sanglah General Hospital, Bali, Indonesia., 4Department of Neurology, Faculty of Medicine, Atma Jaya Catholic University, Jakarta-Indonesia. ABSTRACT Neuropathic pain (NP) is a pain caused by lesions in the nervous system. Several causes of NP are traumatic, metabolic disorders, ischemia, toxins, infections, immune-related, and hereditary. The pathophysiology of NP is very complicated and unknown entirely. Therefore the treatment of NP is still unsatisfactory. Recent studies believed the critical role of primary inflammatory mediators in the pathophysiology of NP especially leukotrienes (LTs). The 5- lipoxygenase enzyme (5-LOX) is an enzyme that plays a role in the metabolism of arachidonic acid into LTs. Leukotrienes (LTs) are the essential inflammatory mediators in the pathophysiology of NP. Leukotriene B4 (LTB4) can cause chemotaxis on neutrophils, lowering nociceptors threshold and may contribute to NP. Several studies believed the administration of 5-LOX inhibitors or LTs receptor antagonists could be useful in the management of NP. The purpose of this review is to summarize the involvement of 5-LOX enzyme as an essential role in the pathophysiology and management of NP. KEYWORDS 5-lipoxygenase, leukotrienes,
    [Show full text]
  • DMD # 35121 1 Human Cytochrome P450, CYP2S1, Metabolizes
    DMD Fast Forward. Published on November 10, 2010 as DOI: 10.1124/dmd.110.035121 DMD FastThis Forward. article has not Published been copyedited on andNovember formatted. The 10, final 2010 version as maydoi:10.1124/dmd.110.035121 differ from this version. DMD # 35121 Human Cytochrome P450, CYP2S1, Metabolizes Cyclooxygenase – and Lipoxygenase – Derived Eicosanoids Peter Bui, Satoshi Imaizumi, Sudheer Reddy Beedanagari, Srinivasa T. Reddy, and Oliver Hankinson Department of Pathology and Laboratory Medicine (P.B., S.R.B., and O.H.), Molecular Toxicology Interdepartmental Program (P.B., S.R.B., and O.H.) , Jonsson Comprehensive Cancer Center (P.B., S.R.B., S.T.R., and O.H.), Department of Medicine (S.I., and S.T.R.), and Downloaded from Department of Molecular and Medical Pharmacology (S.T.R.), University of California at Los Angeles, Los Angeles, California 90095 dmd.aspetjournals.org at ASPET Journals on September 26, 2021 1 Copyright 2010 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on November 10, 2010 as DOI: 10.1124/dmd.110.035121 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 35121 Running title: CYP2S1 metabolizes eicosanoids To whom correspondence should be addressed: Oliver Hankinson, Ph.D. Departmental of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles. 650 Charles E. Young Drive, Los Angeles, CA. 90095 Tel: 310-825-2936 Fax: 310-794-9272 Email: [email protected] Downloaded from Text: 36 pages Tables: 4 dmd.aspetjournals.org Figures: 10 References: 44 Abstract: 228 words at ASPET Journals on September 26, 2021 Introduction: 588 words Discussion: 1,146 words Abbreviations: CYP and P450, cytochrome P450; HPLC, high-performance liquid chromatography; LC-ESI-MS, liquid chromatography-electrospray ionization-mass spectrometry; MS/MS, tandem mass spectrometry; m/z, mass-to-charge ratio; M-H, molecular mass minus 1 2 DMD Fast Forward.
    [Show full text]
  • Planarian Behavior: a Student-Designed Laboratory Exercise
    Planarian Behavior: A Student-Designed Laboratory Exercise Linda T. Collins and Brent W. Harker Department of Biological and Environmental Sciences University of Tennessee at Chattanooga Chattanooga, TN 37403 [email protected] Reprinted From: Collins, L. T. and B. W. Harker. 1999. Planarian behavior: A student-designed laboratory exercise. Pages 375-379, in Tested studies for laboratory teaching, Volume 20 (S. J. Karcher, Editor). Proceedings of the 20th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 399 pages. - Copyright policy: http://www.zoo.utoronto.ca/able/volumes/copyright.htm Although the laboratory exercises in ABLE proceedings volumes have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibility for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in its proceedings volumes. © Linda T. Collins and Brent W. Harker Objectives 1. Know that different types of stimuli can affect planarian movement. 2. Distinguish between kinesis and taxis. 3. After preliminary observations, state a hypothesis to predict or explain planarian movement in response to an external stimulus. Test the hypothesis and reach a conclusion. Introduction Planarians are in the flatworm phylum, Platyhelminthes. Most planarians are free-living and are common in freshwater habitats. They are also found in marine and terrestrial environments. Planarians display bilateral symmetry, meaning the right and left halves are approximately mirror images of each other. The nervous system of planarians consists of an anterior “brain” consisting of large ganglia. Two ventral nerve cords run the length of the body from the ganglia.
    [Show full text]
  • PGE2 Signaling Via the Neuronal EP2 Receptor Increases Injury in a Model of Cerebral Ischemia
    PGE2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia Qingkun Liua, Xibin Liangb, Qian Wanga, Edward N. Wilsona, Rachel Lamb, Jing Wanga, William Kongc, Connie Tsaia, Tingting Pana, Paul B. Larkina, Mehrdad Shamloob, and Katrin I. Andreassona,d,e,1 aDepartment of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; bDepartment of Neurosurgery, Comparative Medicine, and Neurology, Stanford University School of Medicine, Stanford University, Stanford, CA 94305; cInstitute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305; dStanford Neuroscience Institute, Stanford University, Stanford, CA 94305; and eStanford Immunology Program, Stanford University, Stanford, CA 94305 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved April 9, 2019 (received for review November 4, 2018) The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master innate immunity (11), AD (4, 5, 12, 13), Parkinson’s disease (PD) suppressor of beneficial microglial function, and myeloid EP2 signal- (14, 15), and amyotrophic lateral sclerosis (16). More recently, ing ablation reduces pathology in models of inflammatory neurode- studies using myeloid cell conditional knockout strategies identified generation. Here, we investigated the role of PGE2 EP2 signaling in a EP2 receptor-driven pathologic microglial responses in models of model of stroke in which the initial cerebral ischemic event is fol- innate immunity, PD, and AD (4, 12, 15) where ablation of a lowed by an extended poststroke inflammatory response. Myeloid microglial EP2 receptor increased microglial chemotaxis and lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice at- phagocytosis and suppressed proinflammatory gene expression, tenuated brain infiltration of Cd11b+CD45hi macrophages and synaptic injury, and memory deficits.
    [Show full text]
  • Thiazolidine-2,4-Dione Attenuates Atherosclerosis Possibly by Reducing Monocyte Recruitment to the Lesion
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 43, No. 8, 471-478, August 2011 5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion Jae-Hoon Choi1,2*, Jong-Gil Park2,3*, Accepted 20 June 2011 Hyung Jun Jeon2, Mi-Sun Kim4, Mi-Ran Lee2, Available Online 21 June 2011 2 2 5 Mi-Ni Lee , SeongKeun Sonn , Jae-Hong Kim , Abbreviations: 5-LOX, 5-lipoxygenase; BHB-TZD, 5-(3,5-di- Mun Han Lee3, Myung-Sook Choi6, tert-butyl-4-hydroxybenzylidene) thiazolidin-2,4-dione; COX, Yong Bok Park7, Oh-Seung Kwon8, cyclooxygenase; HMB-TZD, 5-(4-hydroxy-2,3,5-trimethyl- Tae-Sook Jeong9, Woo Song Lee10, Hyun Bo Shim2, benzylidene) thiazolidin-2,4-dione; ICAM-1, intercellular 4 2,11 adhesion molecule-1; Ldlr, low density lipoprotein receptor; Dong Hae Shin and Goo Taeg Oh TNF-α, tumor necrosis factor-alpha; VCAM-1, vascular cell adhesion molecule-1 1Department of Life Science College of Natural Sciences Hanyang University Abstract Seoul 133-791, Korea 2Division of Life and Pharmaceutical Sciences A variety of benzylidenethiazole analogs have been Ewha Womans University demonstrated to inhibit 5-lipoxygenase (5-LOX). Here Seoul 120-750, Korea we report the anti-atherogenic potential of 5-(4-hy- 3 Department of Veterinary Biochemistry droxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-di- College of Veterinary Medicine one (HMB-TZD), a benzylidenethiazole analog, and its Seoul National University potential mechanism of action in LDL receptor-defi- Seoul 151-742, Korea cient (Ldlr-/-) mice. HMB-TZD Treatment reduced leuko- 4Division of Life and Pharmaceutical Sciences triene B4 (LTB4) production significantly in RAW264.7 College of Pharmacy macrophages and SVEC4-10 endothelial cells.
    [Show full text]
  • Intrinsic 5-Lipoxygenase Activity Is Required for Neutrophil Responsivity
    Proc. Natl. Acad. Sci. USA Vol. 91, pp. 8156-8159, August 1994 Cell Biology Intrinsic 5-lipoxygenase activity is required for neutrophil responsivity DAVID M. GUIDOT, MICHAEL J. REPINE, JAY Y. WESTCOTT, AND JOHN E. REPINE Webb-Waring Institute for Biomedical Research and Department of Medicine, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Box C-321, Denver, CO 80262 Communicated by David W. Talmage, May 6, 1994 (receivedfor review March 9, 1994) ABSTRACT We found that intrinsic neutrophil 5-lipoxy- neutrophil-mediated injury in isolated lungs given IL-8 intra- genase activity was necessary for human neutrophil adherence tracheally. and chemotaxis in viro and human neutrophil-mediated acute edematous injury in isolated perfused rat lungs given interleu- kin 8 intratracheally. Treatment with either Zileuton (a specific MATERIALS AND METHODS reversible competitive inhibitor of 5-lipoxygenase) or MK886 Purification of Human Neutrophils. Heparinized blood was (a specific irreversible inhibitor ofthe 5-lipoxygenase activator obtained from healthy volunteers. Neutrophils were isolated protein) prevented stimulated neutrophil adherence and by using a Percoll gradient and differential centrifugation. chemotaxis (but not superoxide anion production) in vitro. Each preparation contained highly purified (>99%o) neutro- Zileuton- or MK886-inhibited neutrophil chemotaxis was not phils that were suspended in Hanks' balanced salt solution restored by adding leukotriene B4 in vitro. Perfusion with (Sigma) at a concentration of
    [Show full text]