Weather and Forecasting Challenges in the Pacific

Total Page:16

File Type:pdf, Size:1020Kb

Weather and Forecasting Challenges in the Pacific SEPTEMBER 1998 KODAMA AND BUSINGER 523 Weather and Forecasting Challenges in the Paci®c Region of the National Weather Service KEVIN R. KODAMA* Joint Institute for Marine and Atmospheric Research, Honolulu, Hawaii STEVEN BUSINGER Department of Meteorology, University of Hawaii, Honolulu, Hawaii (Manuscript received 10 April 1997, in ®nal form 2 October 1997) ABSTRACT The large area of responsibility covered by the Paci®c Region of the National Weather Service provides a unique set of challenges to operational forecasters. Extratropical, subtropical, and tropical meteorological phe- nomena on a wide range of temporal and spatial scales must be considered on a daily basis. Compounding the problems of forecasting diverse weather for such a large area of responsibility is the fact that the Paci®c Ocean is a data-sparse region. Recent improvements in data collection platforms and the continued progress made by researchers have helped increase the understanding of weather throughout the region, ultimately resulting in improved forecast services. This article provides an overview of some of the weather phenomena encountered in the Paci®c Region and helps set the stage for the accompanying articles that focus on speci®c weather forecasting problems. Some discussion is provided on the impact of the National Weather Service's modernization program on operational forecasting in the region. 1. Introduction weather support under the auspices of the Compact of Free Association with the U.S. government. Although it is the smallest of the six administrative Because of its size, the Paci®c Region's forecasters regions, the Paci®c Region of the National Weather Ser- are frequently challenged with a wide range of mete- vice (NWS), hereafter the ``Paci®c Region,'' covers by orological phenomena that include extratropical, sub- far the largest geographic area of responsibility (AOR). tropical, and tropical systems. These systems generate Its two forecast of®ces are responsible for providing the heavy rains, high surf, and strong winds that con- weather, marine, and hydrologic forecasts, warnings, stitute the region's greatest weather-related hazards and and watches to a large portion of the Paci®c Ocean. This forecast challenges. Complicating the forecast process is an area more than twice the size of the continental is the paucity of observational data and the variability United States and includes the State of Hawaii, two U.S. introduced by the interactions between the weather sys- trust territories (Guam and American Samoa), and four tems and terrain that ranges from atolls only a few me- foreign countries. These political entities consist of is- ters above sea level to large islands with volcanoes lands and atolls from the Mariana Islands, the Caroline reaching up to 4-km elevation. Islands, the Marshall Islands, the Hawaiian Islands, and The threat to life and property from heavy rains and the Samoa Islands (Fig. 1). The foreign countries, the ¯ash ¯oods is particularly signi®cant in the Hawaiian Commonwealth of the Northern Mariana Islands, the Islands, accounting for most of its damaging weather Republic of Palau, the Federated States of Micronesia, events with an average of six heavy rain events per year, and the Republic of the Marshall Islands, are provided at least one of which has rainfall greater than 250 mm day21 (Kodama and Barnes 1997). In many of the Ha- waiian stream basins, response times to heavy rains are less than 1 h and even as fast as 15 min, making the *Current af®liation: NOAA, NWS Forecast Of®ce, Honolulu, timely detection of heavy rain extremely important. Hawaii. Adding to the forecast challenge is the fact that ¯ood- producing rains can come solely from warm-top con- Corresponding author address: Kevin Kodama, WSFO Honolulu, vection, which is not easily detected in satellite imagery. 2525 Correa Road, Suite 250, Honolulu, HI 96822. Notable examples include the Oahu New Year's Eve E-mail: [email protected] ¯ood (31 December 1987±1 January 1988; Department q 1998 American Meteorological Society 524 WEATHER AND FORECASTING VOLUME 13 FIG. 1. Map of the Paci®c Region's area of responsibility (AOR). The areas covered by the different forecast products are subsets of the entire AOR. For example, the Central Paci®c Hurricane Center (area within the bold black line) in Honolulu, Hawaii, issues forecasts, warnings, and advisories for all tropical cyclone activity within the region north of the equator between 1808 and 1408W. The area within the dashed gray line is the region covered by the High Seas Forecast, issued by the WSFO Honolulu. Other forecast products include forecasts and advisories for aviation terminals and routes, marine interests in coastal and offshore waters, and public state, zone, and local forecasts. of Land and Natural Resources 1988) and the February trade wind events. In Micronesia, most of the damaging 1979 Hilo, Hawaii, heavy rain event (Cram and Tatum wind events are due to tropical cyclone activity (K. 1979). Both cases exhibit warm-top convection with Waters 1997, personal communication). maximum 24-h rainfall in excess of 585 mm. Cram and This paper provides an overview of some of the me- Tatum note cloud tops of less than 4 km in the February teorological phenomena that Paci®c Region forecasters 1979 case. consider in developing forecasts and to discuss some of High surf accounts for most of the Paci®c Region's the impacts of the ongoing NWS modernization and weather-related fatalities. In the Hawaiian Islands, ex- associated restructuring (MAR) program on the region's tratropical cyclones are the most frequent cause of high operations. The articles accompanying this paper ex- surf events. Strong, slow-moving storm systems that amine a few of these issues in greater detail. These develop far to the northwest of the islands can generate include papers on a Hawaiian severe weather event and large swells that produce surf heights in excess of 6 m on the implementation of the National Centers for En- along north-facing shores. Southern Hemisphere extra- vironmental Prediction (NCEP) Regional Spectral Mod- tropical cyclones that form during the austral winter can el (RSM) for operational forecasting in Hawaii. also generate Hawaiian south shore surf heights over 3 m. Due to their location, the islands and atolls of Mi- 2. The large-scale environment cronesia experience a much higher percentage of high surf events from tropical cyclone activity than is ex- The main components of the general circulation af- perienced in Hawaii (D. Mundell and J. Pangelinan fecting the tropical Paci®c are the Hadley circulation 1997, personal communication). Low-lying atolls are and the Walker circulation. The Walker circulation, a also vulnerable to inundation from tropical cyclone term ®rst coined by Bjerknes (1969), is the zonal com- storm surges and high surf from westerly gales and dis- ponent and includes several large-scale, thermally direct tant extratropical cyclones. For example, portions of circulation cells within the equatorial regions of the Majuro Atoll, with a maximum elevation of ;4.5 m, globe. Normally, the cell over the Paci®c contains an have been inundated twice in the last ®ve years. ascending branch in the equatorial western Paci®c and While not as frequent as heavy rain or high surf a descending branch in the eastern Paci®c. In the ther- events, strong wind events are responsible for most of mally direct Hadley circulation, air rises near the equator the Paci®c region's weather-related monetary losses. In and ¯ows poleward aloft. This poleward-moving air is the Hawaiian Islands, most of the damaging wind events generally subsident and results in a semipermanent an- are due to strong extratropical and subtropical cyclones, ticyclone at the surface in the subtropical latitudes of though strong anticyclones also produce destructive the northeastern and southeastern Paci®c. The anticy- SEPTEMBER 1998 KODAMA AND BUSINGER 525 clones go through an annual migration. For example, 1954). Around the Hawaiian Islands, the average trade the mean January position of the northeast Paci®c an- wind inversion base is near the 2300-m level. Although ticyclone is near 308N, 1308W, with a subtropical ridge the height of the inversion near Hawaii can vary con- extending southwestward to near 258N (Fig. 2). By July, siderably from day to day, it usually remains between the anticyclone has expanded considerably with its cen- 1500 and 3000 m above sea level (Grindinger 1992). ter shifted northward to near 358N, 1558W and the sub- Data suggest that the increase in trade wind inversion tropical ridge axis between 308 and 358N. The ¯ow height does not continue all the way to the NETWC. In around these anticyclones results in northeasterly separate experiments, Ramage et al. (1981) and Kloesel (southeasterly) low-level winds over the tropical North and Albrecht (1989) show little change in the height of (South) Paci®c. Known as the trade winds, this persis- the trade wind inversion (near 2000 m) between 158N tent low-level ¯ow regime plays a major role in de®ning and the NETWC. Instead, variability presents itself in the climatology of the region. Over the Hawaiian Is- the frequency of inversion occurrence, with inversions lands, trade winds occur ;70% of the year. A seasonal being less frequent near the NETWC. strati®cation shows that they are most persistent during Another large-scale convergence feature affecting the the summer months, when trade winds blow on ;90% Paci®c region is the South Paci®c convergence zone of the days. During the Hawaiian cool season (October± (SPCZ). The SPCZ extends southeastward from New April), equatorward excursions of extratropical storms Guinea past the Samoa Islands to approximately 308S, may cause a temporary loss of trade wind ¯ow. As a 1408W and is one of the most persistent and expansive result, the trade wind frequency for Hawaii drops down convective cloud bands on earth (Vincent 1994).
Recommended publications
  • Eastern North Pacific Hurricane Season of 1997
    2440 MONTHLY WEATHER REVIEW VOLUME 127 Eastern North Paci®c Hurricane Season of 1997 MILES B. LAWRENCE Tropical Prediction Center, National Weather Service, National Oceanic and Atmospheric Administration, Miami, Florida (Manuscript received 15 June 1998, in ®nal form 20 October 1998) ABSTRACT The hurricane season of the eastern North Paci®c basin is summarized and individual tropical cyclones are described. The number of tropical cyclones was near normal. Hurricane Pauline's rainfall ¯ooding killed more than 200 people in the Acapulco, Mexico, area. Linda became the strongest hurricane on record in this basin with 160-kt 1-min winds. 1. Introduction anomaly. Whitney and Hobgood (1997) show by strat- Tropical cyclone activity was near normal in the east- i®cation that there is little difference in the frequency of eastern Paci®c tropical cyclones during El NinÄo years ern North Paci®c basin (east of 1408W). Seventeen trop- ical cyclones reached at least tropical storm strength and during non-El NinÄo years. However, they did ®nd a relation between SSTs near tropical cyclones and the ($34 kt) (1 kt 5 1nmih21 5 1852/3600 or 0.514 444 maximum intensity attained by tropical cyclones. This ms21) and nine of these reached hurricane force ($64 kt). The long-term (1966±96) averages are 15.7 tropical suggests that the slightly above-normal SSTs near this storms and 8.7 hurricanes. Table 1 lists the names, dates, year's tracks contributed to the seven hurricanes reach- maximum 1-min surface wind speed, minimum central ing 100 kt or more. pressure, and deaths, if any, of the 1997 tropical storms In addition to the infrequent conventional surface, and hurricanes, and Figs.
    [Show full text]
  • Subtropical Storms in the South Atlantic Basin and Their Correlation with Australian East-Coast Cyclones
    2B.5 SUBTROPICAL STORMS IN THE SOUTH ATLANTIC BASIN AND THEIR CORRELATION WITH AUSTRALIAN EAST-COAST CYCLONES Aviva J. Braun* The Pennsylvania State University, University Park, Pennsylvania 1. INTRODUCTION With the exception of warmer SST in the Tasman Sea region (0°−60°S, 25°E−170°W), the climate associated with South Atlantic ST In March 2004, a subtropical storm formed off is very similar to that associated with the coast of Brazil leading to the formation of Australian east-coast cyclones (ECC). A Hurricane Catarina. This was the first coastal mountain range lies along the east documented hurricane to ever occur in the coast of each continent: the Great Dividing South Atlantic basin. It is also the storm that Range in Australia (Fig. 1) and the Serra da has made us reconsider why tropical storms Mantiqueira in the Brazilian Highlands (Fig. 2). (TS) have never been observed in this basin The East Australia Current transports warm, although they regularly form in every other tropical water poleward in the Tasman Sea tropical ocean basin. In fact, every other basin predominantly through transient warm eddies in the world regularly sees tropical storms (Holland et al. 1987), providing a zonal except the South Atlantic. So why is the South temperature gradient important to creating a Atlantic so different? The latitudes in which TS baroclinic environment essential for ST would normally form is subject to 850-200 hPa formation. climatological shears that are far too strong for pure tropical storms (Pezza and Simmonds 2. METHODOLOGY 2006). However, subtropical storms (ST), as defined by Guishard (2006), can form in such a.
    [Show full text]
  • Downloaded 09/24/21 04:27 PM UTC 1512 MONTHLY WEATHER REVIEW VOLUME 146
    MAY 2018 C A V I C C H I A E T A L . 1511 Energetics and Dynamics of Subtropical Australian East Coast Cyclones: Two Contrasting Cases LEONE CAVICCHIA School of Earth Sciences, University of Melbourne, Melbourne, Australia ANDREW DOWDY Bureau of Meteorology, Melbourne, Australia KEVIN WALSH School of Earth Sciences, University of Melbourne, Melbourne, Australia (Manuscript received 27 October 2017, in final form 13 March 2018) ABSTRACT The subtropical east coast region of Australia is characterized by the frequent occurrence of low pressure systems, known as east coast lows (ECLs). The more intense ECLs can cause severe damage and disruptions to this region. While the term ‘‘east coast low’’ refers to a broad classification of events, it has been argued that different ECLs can have substantial differences in their nature, being dominated by baroclinic and barotropic processes in different degrees. Here we reexamine two well-known historical ECL case studies under this perspective: the Duck storm of March 2001 and the Pasha Bulker storm of June 2007. Exploiting the cyclone phase space analysis to study the storms’ full three-dimensional structure, we show that one storm has features similar to a typical extratropical frontal cyclone, while the other has hybrid tropical–extratropical charac- teristics. Furthermore, we examine the energetics of the atmosphere in a limited area including both systems for the ECL occurrence times, and show that the two cyclones are associated with different signatures in the energy conversion terms. We argue that the systematic use of the phase space and energetics diagnostics can form the basis for a physically based classification of ECLs, which is important to advance the understanding of ECL risk in a changing climate.
    [Show full text]
  • The Unnamed Atlantic Tropical Storms of 1970
    944 MONTHLY WEATHER REVIEW Vol. 99, No. 12 UDC 551.515.23:661.507.35!2:551.607.362.2(261) “1970.08-.lo” THE UNNAMED ATLANTIC TROPICAL STORMS OF 1970 DAVID B. SPIEGLER Allied Research Associates, Inc., Concord, Mass. ABSTRACT A detailed analysis of conventional and aircraft reconnaissance data and satellite pictures for two unnamed Atlantic Ocean cyclones during 1970 indicates that the stqrms were of tropical nature and were probably of at least minimal hurricane intensity for part of their life history. Prior to becoming a hurricane, one of the storms exhibited characteristics not typical of any of the recognized classical cyclone types [i.e., tropical, extratropical, and subtropical (Kona)]. The implications of this are discussed and the concept of semitropical cyclones as a separate cyclone category is advanced. 6. INTRODUCTION ing recognition of hybrid-type storms provides additional support for the recommendation. During the 1970 tropical cyclone season, tn7o storms occurred that were not given names at the time. The 2. UNNAMED STORM NO. I-AUG. Q3-$8, 6970 National Hurricane Center (NHC) monitored their prog- ress and issued bulletins throughout their life history but A mell-organized tropical disturbance noted on satellite they mere not officially recognized as tropical cyclones of pictures during August 8, south of the Cape Verde Islands tropical storm or hurricane intensity. In their annual post- in the far eastern tropical Atlantic, intensified to ti strong season summary of the hurricane season, NHC discusses depression as it moved westmarcl. On Thursday, August 13, these storms in some detail (Simpson and Pelissier 1971) some further intensification of the system appeared to be but thej- are not presently included in the official list of taking place while the depression was about 250 mi 1970 tropical storms.
    [Show full text]
  • Lang Hurricane Basic Information Flyer
    LANG FLYER INFORMATION BASIC LANG HURRICANE HURRICANE BASIC INFORMATION FLYER FLYER This flyer will try to explain what actions to take when you receive a hurricane watch or warning alert from the INFORMATION INFORMATION National Weather Service for your local area. It also provides tips on what to do before, during, and after a hurricane. https://www.ready.gov/hurricane-toolkit LANG EM WEB PAGE: LANG HURRICANE BASIC BASIC LANG HURRICANE http://geauxguard.la.gov/resources/emergency-management/ 1 Hurricane Basics What Hurricanes are massive storm systems that form over the water and move toward land. Threats from hurricanes include high winds, heavy rainfall, storm surge, coastal and inland flooding, rip currents, and tornadoes. These large storms are called typhoons in the North Pacific Ocean and cyclones in other parts of the world. Where Each year, many parts of the United States experience heavy rains, strong winds, floods, and coastal storm surges from tropical storms and hurricanes. Affected areas include all Atlantic and Gulf of Mexico coastal areas and areas over 100 miles inland, Puerto Rico, the U.S. Virgin Islands, Hawaii, parts of the Southwest, the Pacific Coast, and the U.S. territories in the Pacific. A significant per cent of fatalities occur outside of landfall counties with causes due to inland flooding. When The Atlantic hurricane season runs from June 1 to November 30, with the peak occurring between mid- August and late October. The Eastern Pacific hurricane season begins May 15 and ends November 30. Basic Preparedness Tips •Know where to go. If you are ordered to evacuate, know the local hurricane evacuation route(s) to take and have a plan for where you can stay.
    [Show full text]
  • Flood of August 1950 in the Waimea Area Kauai, Hawaii
    Flood of August 1950 in the Waimea Area Kauai, Hawaii > R. K. CHUN :^LOODS OF 1950 GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1137-C ^repared in cooperation with the Territory of Hawaii UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1952 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 15 cents (paper cover) PREFACE This report on the flood of August 1950 in Kauai, T. H., was prepared in the Surface Water Branch, J. V. B. Wells, Chief. The material was assem­ bled and the text was written by R. K. Chun, hydraulic engineer, under the immediate super­ vision of M. H. Carson, District Engineer. Base data used in this report were collected in cooperation with the Territory of Hawaii. The Weather Bureau furnished a discussion on the meteorology of the storm and a map showing the path of the hurricane. The collection of data for indirect determination of peak discharges was supervised, and the computations made, by Hollister Johnson, hydraulic engineer. Ill CONTENTS Page Introduction ..................................................... 327 Stages and discharges at stream-gaging stations ..................... 327 Waimea River near Waimea, Kauai .............................. 331 Kawaikoi Stream near Waimea, Kauai ............................ 332 Mohihi Stream near Waimea/ Kauai .............................. 333 Makaweli River near Waimea, Kauai ............................. 334 Combined discharge of Waimea and Makaweli Rivers ............... 335 Summary of flood data ............................................ 337 Flood stages and discharges ..................................... 337 Annual floods in Waimea River ................................... 337 Physical features of Kauai'........................................ 342 Meteorological features of the flood ................................ 343 Precipitation................................................... 343 Meteorology, by R.
    [Show full text]
  • ANNUAL SUMMARY Atlantic Hurricane Season of 2005
    MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record.
    [Show full text]
  • The Climatology and Nature of Tropical Cyclones of the Eastern North
    THE CLIMATOLOGY AND NATURE OF TROPICAL CYCLONES OF THE EASTERN NORTH PACIFIC OCE<\N Herbert Loye Hansen Library . U.S. Naval Postgraduate SchdOl Monterey. California 93940 L POSTGRADUATE SCHOOL Monterey, California 1 h i £L O 1 ^ The Climatology and Nature of Trop ical Cy clones of the Eastern North Pacific Ocean by Herbert Loye Hansen Th ssis Advisor : R.J. Renard September 1972 Approved ^oh. pubtic tidLixu, e; dLitnAhiLtlon anturuJitd. TU9568 The Climatology and Nature of Tropical Cyclones of the Eastern North Pacific Ocean by Herbert Loye Hansen Commander, United 'States Navy B.S., Drake University, 1954 B.S., Naval Postgraduate School, 1960 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN METEOROLOGY from the b - duate School y s ^594Q Mo:.--- Lilornia ABSTRACT Meteorological satellites have revealed the need for a major revision of existing climatology of tropical cyclones in the Eastern North Pacific Ocean. The years of reasonably good satellite coverage from 1965 through 1971 provide the data base from which climatologies of frequency, duration, intensity, areas of formation and dissipation and track and speed characteristics are compiled. The climatology of re- curving tracks is treated independently. The probable structure of tropical cyclones is reviewed and applied to this region. Application of these climatolo- gies to forecasting problems is illustrated. The factors best related to formation and dissipation in this area are shown to be sea-surface temperature and vertical wind shear. The cyclones are found to be smaller and weaker than those of the western Pacific and Atlantic oceans. TABLE OF CONTENTS I.
    [Show full text]
  • Mariner's Guide for Hurricane Awareness
    Mariner’s Guide For Hurricane Awareness In The North Atlantic Basin Eric J. Holweg [email protected] Meteorologist Tropical Analysis and Forecast Branch Tropical Prediction Center National Weather Service National Oceanic and Atmospheric Administration August 2000 Internet Sites with Weather and Communications Information Of Interest To The Mariner NOAA home page: http://www.noaa.gov NWS home page: http://www.nws.noaa.gov NWS marine dissemination page: http://www.nws.noaa.gov/om/marine/home.htm NWS marine text products: http://www.nws.noaa.gov/om/marine/forecast.htm NWS radio facsmile/marine charts: http://weather.noaa.gov/fax/marine.shtml NWS publications: http://www.nws.noaa.gov/om/nwspub.htm NOAA Data Buoy Center: http://www.ndbc.noaa.gov NOAA Weather Radio: http://www.nws.noaa.gov/nwr National Ocean Service (NOS): http://co-ops.nos.noaa.gov/ NOS Tide data: http://tidesonline.nos.noaa.gov/ USCG Navigation Center: http://www.navcen.uscg.mil Tropical Prediction Center: http://www.nhc.noaa.gov/ High Seas Forecasts and Charts: http://www.nhc.noaa.gov/forecast.html Marine Prediction Center: http://www.mpc.ncep.noaa.gov SST & Gulfstream: http://www4.nlmoc.navy.mil/data/oceans/gulfstream.html Hurricane Preparedness & Tracks: http://www.fema.gov/fema/trop.htm Time Zone Conversions: http://tycho.usno.navy.mil/zones.html Table of Contents Introduction and Purpose ................................................................................................................... 1 Disclaimer ...........................................................................................................................................
    [Show full text]
  • A Synoptic World Weather Analysis of Tiros Vii Radiation Data
    NASA TECHNICAL NOTE A SYNOPTIC WORLD WEATHER ANALYSIS OF TIROS VI1 RADIATION DATA bY Lewis J. Allison Goddard Space Flight Center Greenbelt, M d. i I_ 'I and './ Gzrenter Wamecke Freie Universitlit Berlin Berlin, West Germany NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 0 WASHINGTON, D. C. 0 JUNE 1967 TECH LIBRARY KAFB, NM I illlll11111111111111111111 IIIII lllll1l11 Ill1 hT A 0330533 A SYNOPTIC WORLD WEATHER ANALYSIS OF TIROS VI1 RADIATION DATA By Lewis J. Allison Goddard Space Flight Center Greenbelt, Md. and Guenter Warnecke Freie Universitgt Berlin Berlin, West Germany NATIONAL AERONAUT ICs AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTI price $3.00 ABSTRACT A synoptic world weather analysis of TIROS VI1 radia- tion data was made for January 21-22, 1964. The distri- bution of quasi-global cloudiness inferred from the channel 2 (8-lap) "atmospheric window" data was compared with a previously published, July 16, 1961, study of TIROS 111 8-12p radiation data. The January 1964 radiation-synoptic analysis is characterized by a small difference in outgoing radiation between the winter and summer hemispheres. It was also noted that mid-latitude frontal systems extend into the sub-tropics during the southern hemisphere summer. The January-July radiation study tends to confirm our premise that the 8-1211. infrared region is suited for global synoptic detection and tracking of meso-scale meteorologi- cal features. ii ......... , CONTENTS Abstract .............................. INTRODUCTION ......................... METHOD OF ANALYSIS.. .................. THE TIROS VI1 AND TIROS 111 RADIATION ANALYSES OF JANUARY 21 -22, 1964 AND JULY 16,1961.
    [Show full text]
  • 9. East Pacific Easterly Wave Genesis Experiment
    9. East Pacific Easterly Wave Genesis Experiment Principle Investigators: Ghassan Alaka (HRD) Adam Rydbeck (NRL) Eric Maloney (CSU) Links to IFEX Goals: Goal 1: Collect observations that span the TC life cycle in a variety of environments for model initialization and evaluation; Goal 3: Improve understanding of the physical processes important in intensity change for a TC at all stages of its lifecycle. Significance & Background: Many studies have hypothesized that African easterly waves (EWs) serve as seed disturbances for East Pacific tropical cyclones (TCs) (e.g., Avila and Pasch 1992). However, it is often difficult to track African EWs crossing Central America and entering the East Pacific basin. In addition, African EWs may not be necessary to initiate EWs in the East Pacific. Several mechanisms for the in situ generation of EWs in the East Pacific have been proposed: 1) breakdown of the inter-tropical convergence zone (Ferriera and Schubert 1997), 2) barotropically unstable gap jets (Mozer and Zehnder 1996), 3) inertial instabilities from cross-equatorial pressure gradients (Toma and Webster 2010), 4) growth of vorticity noise by barotropic conversion in favorable basic states (Maloney and Hartmann 2001, Hartmann and Maloney 2001), and 5) upscale vorticity organization from diurnal convection in the Panama Bight (Rydbeck et al. 2016). This last mechanism for EW generation, proposed by Rydbeck et al. (2016), is the focus of this experiment. East Pacific EW initiation can occur near the coasts of Panama and Colombia, with little or no preceding signal propagating from the Atlantic Ocean (Rydbeck and Maloney 2014). The Panama Bight has the highest occurrence of organized deep convection on the planet based on the NOAA Highly Reflective Cloud dataset (Kilonsky and Ramage 1976).
    [Show full text]
  • NATIONAL WEATHER SERVICE INSTRUCTION 10-601 JUNE 8, 2012 Operations and Services Tropical Cyclone Weather Services Program, NWSPD 10-6 TROPICAL CYCLONE PRODUCTS
    Department of Commerce • National Oceanic & Atmospheric Administration • National Weather Service NATIONAL WEATHER SERVICE INSTRUCTION 10-601 JUNE 8, 2012 Operations and Services Tropical Cyclone Weather Services Program, NWSPD 10-6 TROPICAL CYCLONE PRODUCTS NOTICE: This publication is available at: http://www.nws.noaa.gov/directives/. OPR: W/OS21 (T. Schott) Certified by: W/OS21 (M. Tew) Type of Issuance: Emergency SUMMARY OF REVISIONS: This directive supersedes NWS Instruction 10-601, dated June 15, 2011. The following revisions were made to this directive: 1.1.3.3.d Standardizes CONUS policy for storm surge information in the TCP as the combination of storm surge and tides, to emphasize total water level (i.e., inundation) 1.5.2.3 Added WFO Guam policy 1.10.2.3 Added WFO Guam policy 7.1.3.4 Added WFO Guam policy 7.1.4 Updates HLS policy for relationship between the HLS and Rip Current Statement /RP.S/Changes to product examples in Appendix: Updates TWO examples Updates TCU example Updates TCP example with improved storm surge wording Signed May 25, 2012 David B. Caldwell Date Director, Office of Climate, Water, and Weather Services NWSI 10-601 JUNE 8, 2012 Tropical Cyclone Products 1. Tropical Cyclone Forecast and Advisory Products .............................................................4 1.1 Tropical Cyclone Public Advisories (TCP) .............................................................4 1.2 Tropical Cyclone Forecasts/Advisories (TCM) .....................................................11 1.3 Tropical Cyclone Discussions
    [Show full text]