Coelogyne Cristata and Pholidota Articulata Used for Healing Fractures

Total Page:16

File Type:pdf, Size:1020Kb

Coelogyne Cristata and Pholidota Articulata Used for Healing Fractures Indian Journal of Experimental Biology Vol. 55, September 2017, pp. 622-627 Pharmacognostical evaluation of Indian folk-traditional plants Coelogyne cristata and Pholidota articulata used for healing fractures Chetan Sharma1, Saba Irshad2, Sayyada Khatoon2 & KR Arya1* 1Botany Division, CSIR-Central Drug Research Institute, Lucknow-226 031, India. 2Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226 001, India. Received 07 May 2015; 14 September 2016 Coelogyne cristata Lindley (CC) and Pholidota articulata Lindley (PA) (Fam. Orchidaceae), locally known as ‘hadjojen’(bone jointer) are the most effective traditional remedies for healing fractures in Uttarakhand Himalaya, India. Recent pharmacological investigations of crude extracts and isolated compounds from these plant species revealed rapid fracture healing properties and osteogenic potential. This paper provides macro and microscopic characteristic features, physicochemical properties and HPTLC profiles of both the species. Microscopic studies of leaf, pseudobulb and powdered materials showed collateral vascular bundles containing large number of mucilage cells, parenchymatous cells with pitted banded lignified or beaded with mesh-like network, septate and aseptate fibres, rhomboidal crystals of calcium oxalate and pitted parenchyma. Comparative HPTLC profile showed blue and pink florescent band at different Rf values with the distinct characteristic bands at Rf 0.31, 0.47 and 0.62 corresponding to the analytical marker compounds: ursolic acid, -sitosterol and lupeol respectively in both CC and PA. Findings of this study can be used a standardized pharmacognostical markers of CC and PA for identification and authentication of their genuine herbal drug formulations as quality control markers. Keywords: Bone jointer, Hadjojen, Herbal, HPTLC, Osteogenic, Orchids, Pharmacognosy Coelogyne cristata Lindley (CC) and Pholidota and PA are known with the similar local trade articulata Lindley (PA) belongs to family name‘Hadjojen’(bone jointer). Poultice made from Orchidaceae and are distributed throughout mountane the whole parts of the plants were used as fracture to submountane zones from Uttarakhand Himalayas healing remedies in folk tradition of Kumaon and (Kumaon and Garhwal) to Arunanchal Pradesh and Garhwal region of Uttarakhand Himalaya, India4. Our Indo-China to Malaysia1. These ancient medicinal recent chemical and pharmacological investigations plants, has long been used as a remedy for acute or on crude extract and its isolated compounds revealed chronic bronchitis, toothache, duodenal ulcer and rapid fracture healing properties in ovariectomized fracture healing2-4 and proved to be a rich store-house estrogen deficient rats and focused as potential plants of phytochemicals including alkaloids, flavonoids, for the treatment of osteoporosis during menopausal glycosides, benzyl derivatives, phenanthrenes, terpenoids, disorders10,11. Standardization of pharmacognostical phenolic compounds, pyrone derivatives, etc.5-7 with markers for quality of products due to deliberate promising biological activities for antitumor, anti- adulteration is one of the major challenging tasks to inflammatory, anticancer, anticonvulsive, antidiabetic, authenticate and maintain the quality of herbal osteoprotective, etc.6,8,9. Nearly 200 species of products12. In view of its diverse medicinal Coelogyne and 46 species of Pholidota are distributed applications and in order to ensure the quality, all over the world1,3 and only 5-6 species have been authenticity and assay as well as lack of investigated in some details6. pharmacognostic studies, the present investigation During ethno botanical and local herbal drug was undertaken with an objective to evaluate both the market survey revealed that both the plant species CC plant species on various pharmacognostical parameters, such as macroscopic, microscopic, —————— physiochemical, fluorescence and phytochemical *Correspondence: studies. Taxonomically both the plants species are Phone: +91 522 2772467; Fax: +91 522 2771941 E-mail: [email protected] different in their morphological characters along with SHARMA et al.: PHARMACOGNOSTICAL EVALUATION OF INDIAN TRADITIONAL ORCHIDS 623 their chemical constituents and biological porcelain crucible at 550°C in a muffle furnace. activities10,11. No pharmacognostical investigations Physicochemical values were calculated as per are available so far on these two plant species. Standard Indian Pharmacopoeial methods13. The pharmaceutical application for fracture Powdered material (10 g) was extracted with healing properties of these plant species are now methanol on a water bath for 25 min, consecutively in public domain. Standardization of pharmacological thrice, concentrated and dried the extract. Known markers for identification and authentication of quantity of extract was dissolved in methanol for these important herbal drug formulations seem to HPTLC. One mg of -sitosterol, lupeol and ursolic be logical. This paper reports a detailed acid (Sigma) as reference markers were also dissolved pharmacognostical study of CC and PA pertaining separately in 10 mL methanol. with the macro and microscopical studies, physico- phytochemical parameters and HPTLC profiling as Chromatographic conditions standard pharmacognostical markers for identification Known quantity of methanolic extracts along with and authentication of their herbal products. chemical markers (lupeol, sitosterol and ursolic acid) were applied on to Higlachrosep nano silica UV Materials and Methods 254 HPTLC plates (10 ×10 cm) with 0.2 mm nano silica with fluorescent indicator (S.D. Fine-Chem. Plant materials and processing Ltd. India) using CAMAG Linomat 5 Applicator, Fresh plant material (leaves and pseudobulb) of CC band size 5mm, positioned 10 mm at X axis and and PA were collected from Bajun forest range of 10 mm at Y axis, 10.5 mm distance between two Nainital district, Kumaon, Uttarakhand, India and tracks. Plate was eluted to a distance of 8.5 cm at identified by one of the senior author (KRA) 1 room temperature (24±2ºC) in a solvent system- according to Flora of District Garhwal . Voucher toluene: ethyl acetate: formic acid (8: 2: 0.1) in specimens KRA-24462 and KRA-24460, respectively previously saturated twin trough chamber (CAMAG). have been deposited in the departmental herbarium of Photographs were taken under UV light 254 and CSIR-Central Drug Research Institute, Lucknow. 366 nm using CAMAG Reprostar 3 video Plant materials were chopped into small pieces and documentation unit (CAMAG). Plate was derivatized completely shed dried. All precautions were by dipping in anisaldehyde sulphuric acid reagent and undertaken to avoid any types of microbial after heating plate at 110ºC for 10 min documented contamination. The dried material was powdered under visible light. Plate was scanned at wavelength using grinder. For microscopic studies, transverse 580 nm using CAMAG TLC Scanner 3 with software sections (TS) were prepared and stained. Leaf winCATS 4.3.2. constant i.e. stomatal number and stomatal index was studied according to the standard methods13,14. Results and Discussion Samples were dried at 50±2ºC in a hot air oven, Macroscopy stored at 25±2ºC in air tight container. Dried plant Coelogyne cristata Lindley material of both the species was powdered and sieve Flowers are white, borne in 3-10 flowered clusters through the 85 mesh. A small quantity of powdered 15-20 cm long hanging clusters, 5-9 cm across, with a material was washed with water and then cleared by white lip with 4 yellow ridges at the base between the heating gently with saturated chloral hydrate solution, lateral lobes, 2 broad crenulate yellow plates on the cooled and mounted in glycerin for microscopic mid-lobe, Sepals and petals are 4-5 cm long, observation of powder. oblong blunt with wavy margins, Bracts are oblong and persistent, Spur is absent. Leaves are paired, Physicochemical studies linear-lance shaped 15-30 cm long, 2-3 cm broad. Physicochemical analysis such as the percentage of Pseudobulbs are oblong ovoid, 5-8 cm, arising from a ash values and extractive values were carried out stout rhizome (Fig. 1A). The flowering season is according to the official methods prescribed in Indian 13,15 March-April. Pharmacopoeias and the WHO guidelines on quality control methods for medicinal plant Pholidota articulata Lindley materials16. About 1 g of each dried powder was Flowers greenish white or white and slightly tinged weighed and subjected to dry-ashing in a well-cleaned with reddish pedicel. Dorsal sepal oblong or elliptic, 624 INDIAN J EXP BIOL, SEPTEMBER 2017 Fig. 1 — (A) Coelogyne cristata Lindley; and (B) Pholidota articulata Lindley. concave, 9-10 × 4-5 mm, dorsally carinate, 5-veined; lateral sepals ovate, oblique, slightly wider than dorsal sepal. Petals oblong-lanceolate or suboblanceolate, 7 × 2-2.5 mm, 5-veined; lip broadly oblong in outline, contracted at apical 1/4-1/3 into epichile and hypochile; hypochile cymbiform, slightly wider than Fig. 2 — T.S. of CC and PA leaf (i) T. S. of CC leaf (ii) T. S. of epichile, with 5 longitudinal lamellae near base; PA leaf (iii) T. S. through parallal vein of PA leaf(iv) T. S. epichile transversely elliptic, 3-4 mm wide, margin through laminar region of CC leaf (v) T. S. through mid-rib portion of CC leaf; Pholidota articulata [Cu-Cuticle, Uep- Upper crisped. Column 2.5-3 mm, 1 mm wide, stout, apex Epidermis, Hypo- hypodermis, Aer- Aerenchyma, Vb- Vascular winged;
Recommended publications
  • Coelogyne Flaccida
    Coelogyne flaccida Sectie : Epidendroideae, Ondersectie : Coelogyninae Naamverklaring : De geslachtsnaam Coelogyne is afgeleid van het Griekse koilos=holte en gyne(guné)=vrouw. De stempel, het vrouwelijk orgaan van de plant, heeft aan de voorzijde een diepe holte. Flaccida betekent slap, wegens de hangende bloeiwijze. Variëteiten : var.crenulata Pfitz. :de overgang naar het voorste gedeelte van de middenlob is fijn getand. var.elegans Pfitz.: terugbuiging van de lip is onduidelijk waardoor de middenlob nauwelijks te onderscheiden is; bloemen groter en bijna reukloos. Distributie : Himalya: Nepal, Sikkim en Assam tot Burma. Komt voor op een hoogte van 1000 tot 2000 m , meestal epifytisch, zelden lithofytisch. In dichte bomenbestanden op bemoste takken. Beschrijving : Coelogyne flaccida groeit in dichte pollen in humusresten in de oksels van boomtakken. Bulben dicht op elkaar, verbonden door korte rhizomen, 10 x 2,5 cm groot en al in het eerste jaar duidelijk in de lengte gegroefd. Rijpe bulben hebben aan de basis 2 droge schutbladen en dragen 2 leerachtige bladeren, tot 20 x 4 cm, smal elliptisch, spits toelopend. De bloeistengel ontwikkelt zich uit een bijzondere uitloper in de oksel van een schutblad en staat dan op een heel klein onderontwikkelde bulbe, geheel door groene schutbladeren omgeven. De bloeistengel gaat hangen, wordt tot 25 cm lang en draagt 6 - 10 bloemen. Bloemen stervormig, 4 -5 cm in doorsnee, onaangenaam geurend. Sepalen vlak, smal elliptisch, spits toelopend; petalen teruggebogen, vrijwel even lang, maar half zo breed. Kleur wit tot licht crèmekleurig. Lip in drieën gedeeld, de zijlobben staan rechtop en omvatten half het zuiltje. De middenlob steekt naar voren, met teruggeslagen of gebogen punt.
    [Show full text]
  • Multiple Colonizations Lead to Cryptic Biodiversity in an Island Ecosystem: Comparative Phylogeography of Anchialine Shrimp Species in the Ryukyu Archipelago, Japan
    Reference: Biol. Bull. 225: 24–41. (September 2013) © 2013 Marine Biological Laboratory Multiple Colonizations Lead to Cryptic Biodiversity in an Island Ecosystem: Comparative Phylogeography of Anchialine Shrimp Species in the Ryukyu Archipelago, Japan DAVID A. WEESE1,* YOSHIHISA FUJITA2,3, AND SCOTT R. SANTOS1,4 1Department of Biological Sciences and Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, 101 Life Sciences Building, Auburn, Alabama 36849; 2University Education Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan; 3Marine Learning Center, 2-95-101 Miyagi, Chatan-cho, Okinawa 904-0113, Japan; 4Cell and Molecular Biosciences Peak Program, Auburn University, 101 Life Sciences Building, Auburn, Alabama 36849 Abstract. Archipelagos of the Indo-West Pacific are con- results, when interpreted in the context of Pacific oceano- sidered to be among the richest in the world in biodiversity, graphic currents and geologic history of the Ryukyus, imply and phylogeographic studies generally support either the multiple colonizations of the archipelago by the three spe- center of origin or the center of accumulation hypothesis to cies, consistent with the center of accumulation hypothesis. explain this pattern. To differentiate between these compet- While this study contributes toward understanding the bio- ing hypotheses for organisms from the Indo-West Pacific diversity, ecology, and evolution of organisms in the anchialine ecosystem, defined as coastal bodies of mixoha- Ryukyus and the Indo-West Pacific, it also has potential line water fluctuating with the tides but having no direct utility in establishing conservation strategies for anchialine oceanic connections, we investigated the genetic variation, fauna of the Pacific Basin in general.
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]
  • Orchidaceae, Coelogyninae)
    A peer-reviewed open-access journal PhytoKeys 136: 97–106 (2019) The identities of two Pholidota species 97 doi: 10.3897/phytokeys.136.46705 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research The taxonomic identities of Pholidota wenshanica and P. subcalceata (Orchidaceae, Coelogyninae) Lin Li1, Min Qin1,2, Wan-Yao Wang3, Song-Jun Zeng1, Guo-Qiang Zhang4, Zhong-Jian Liu5 1 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Gar- den, Chinese Academy of Sciences, Guangzhou 510650, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Hangzhou Heyi Gene Technology Co. Ltd., Hangzhou 310000, China 4 Key Labo- ratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The Na- tional Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, Shenzhen, 518114, China 5 Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350001, China Corresponding author: Guo-Qiang Zhang ([email protected]), Zhong-Jian Liu ([email protected]) Academic editor: V. Droissart | Received 19 September 2019 | Accepted 22 November 2019 | Published 19 December 2019 Citation: Li L, Qin M, Wang W-Y, Zeng S-J, Zhang G-Q, Liu Z-J (2019) The taxonomic identities ofPholidota wenshanica and P. subcalceata (Orchidaceae, Coelogyninae). PhytoKeys 136: 97–106. https://doi.org/10.3897/phytokeys.136.46705 Abstract P. wenshanica S.C.Chen & Z.H.Tsi and P. subcalceata Gagnep. have long been recognized as synonyms of P. leveilleana Schltr.
    [Show full text]
  • Orchids – Tropical Species
    Orchids – Tropical Species Scientific Name Quantity Acianthera aculeata 1 Acianthera hoffmannseggiana 'Woodstream' 1 Acianthera johnsonii 1 Acianthera luteola 1 Acianthera pubescens 3 Acianthera recurva 1 Acianthera sicula 1 Acineta mireyae 3 Acineta superba 17 Aerangis biloba 2 Aerangis citrata 1 Aerangis hariotiana 3 Aerangis hildebrandtii 'GC' 1 Aerangis luteoalba var. rhodosticta 2 Aerangis modesta 1 Aerangis mystacidii 1 Aeranthes arachnitis 1 Aeranthes sp. '#109 RAN' 1 Aerides leeana 1 Aerides multiflora 1 Aetheorhyncha andreettae 1 Anathallis acuminata 1 Anathallis linearifolia 1 Anathallis sertularioides 1 Angraecum breve 43 Angraecum didieri 2 Angraecum distichum 1 Angraecum eburneum 1 Angraecum eburneum subsp. superbum 15 Angraecum eichlerianum 2 Angraecum florulentum 1 Angraecum leonis 1 Angraecum leonis 'H&R' 1 Angraecum longicalcar 33 Angraecum magdalenae 2 Angraecum obesum 1 Angraecum sesquipedale 8 Angraecum sesquipedale var. angustifolium 2 Angraecum sesquipedale 'Winter White' × A. sesquipedale var. bosseri 1 'Summertime Dream' Anguloa cliftonii 2 Anguloa clowesii 3 Smithsonian Gardens December 19, 2018 Orchids – Tropical Species Scientific Name Quantity Anguloa dubia 2 Anguloa eburnea 2 Anguloa virginalis 2 Ansellia africana 1 Ansellia africana ('Primero' × 'Joann Steele') 3 Ansellia africana 'Garden Party' 1 Arpophyllum giganteum 3 Arpophyllum giganteum subsp. medium 1 Aspasia epidendroides 2 Aspasia psittacina 1 Barkeria spectabilis 2 Bifrenaria aureofulva 1 Bifrenaria harrisoniae 5 Bifrenaria inodora 3 Bifrenaria tyrianthina 5 Bletilla striata 13 Brassavola cucullata 2 Brassavola nodosa 4 Brassavola revoluta 1 Brassavola sp. 1 Brassavola subulifolia 1 Brassavola subulifolia 'H & R' 1 Brassavola tuberculata 2 Brassia arcuigera 'Pumpkin Patch' 1 Brassia aurantiaca 1 Brassia euodes 1 Brassia keiliana 1 Brassia keiliana 'Jeanne' 1 Brassia lanceana 3 Brassia signata 1 Brassia verrucosa 3 Brassia warszewiczii 1 Broughtonia sanguinea 1 Broughtonia sanguinea 'Star Splash' × B.
    [Show full text]
  • TPG Index Volumes 1-35 1986-2020
    Public Garden Index – Volumes 1-35 (1986 – 2020) #Giving Tuesday. HOW DOES YOUR GARDEN About This Issue (continued) GROW ? Swift 31 (3): 25 Dobbs, Madeline (continued) #givingTuesday fundraising 31 (3): 25 Public garden management: Read all #landscapechat about it! 26 (W): 5–6 Corona Tools 27 (W): 8 Rocket science leadership. Interview green industry 27 (W): 8 with Elachi 23 (1): 24–26 social media 27 (W): 8 Unmask your garden heroes: Taking a ValleyCrest Landscape Companies 27 (W): 8 closer look at earned revenue. #landscapechat: Fostering green industry 25 (2): 5–6 communication, one tweet at a time. Donnelly, Gerard T. Trees: Backbone of Kaufman 27 (W): 8 the garden 6 (1): 6 Dosmann, Michael S. Sustaining plant collections: Are we? 23 (3/4): 7–9 AABGA (American Association of Downie, Alex. Information management Botanical Gardens and Arboreta) See 8 (4): 6 American Public Gardens Association Eberbach, Catherine. Educators without AABGA: The first fifty years. Interview by borders 22 (1): 5–6 Sullivan. Ching, Creech, Lighty, Mathias, Eirhart, Linda. Plant collections in historic McClintock, Mulligan, Oppe, Taylor, landscapes 28 (4): 4–5 Voight, Widmoyer, and Wyman 5 (4): 8–12 Elias, Thomas S. Botany and botanical AABGA annual conference in Essential gardens 6 (3): 6 resources for garden directors. Olin Folsom, James P. Communication 19 (1): 7 17 (1): 12 Rediscovering the Ranch 23 (2): 7–9 AAM See American Association of Museums Water management 5 (3): 6 AAM accreditation is for gardens! SPECIAL Galbraith, David A. Another look at REPORT. Taylor, Hart, Williams, and Lowe invasives 17 (4): 7 15 (3): 3–11 Greenstein, Susan T.
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • Of Pholidota Articulata
    Human Journals Research Article November 2016 Vol.:5, Issue:1 © All rights are reserved by Darshan Singh et al. In Vitro Antioxidant Activity and Phytochemical Screening of Pholidota articulata Keywords: Pholidota articulata, Orchidaceae, Antioxidant activity ABSTRACT Darshan Singh1*, Satish C. Sati1, Subhash Chandra2, 1 The aim of this research was to evaluate antioxidant activity Maneesha D. Sati and phytochemical screening of P. articulata. The extraction 1 Department of Chemistry, process involved fractionation with various solvents and 2 Department of Pharmaceutical Chemistry, concentrated using rotary evaporator. The results of H. N. B. Garhwal (A Central University) Srinagar antioxidant activity study of P. articulata showed maximum Garhwal, Uttarakhand, India, 246174. activity in the methanolic extracts at different concentrations of 100, 200, 300 and 400 µg/ml. The percent inhibition of Submission: 29 October 2016 writhing response by the extract was 36.18%, 44.72%, Accepted: 7 November 2016 59.21%. 67.08% and 83.39% respectively. Published: 25 November 2016 www.ijsrm.humanjournals.com www.ijsrm.humanjournals.com INTRODUCTION The genus Pholidota (Orchidaceae) belongs to the tribe coelogyneae and comprises 55 species with a distribution from tropical Asia to tropical Australia and China. Among them, 9 species are in India. Commonly distributed from submontane to montane Himalaya. The genus pholidota are epiphytic herbs generally grown on rocks and trees [1]. Most plants of the genus Pholidota found in India grow as epiphytes. Some are also found growing on moist, moss covered rock structures on large, hilly slopes. On the earth, out of 4,22,127 plant species, about 35,000 to 70,000 species are used as medicinal plants [2].
    [Show full text]
  • Coelogyne Unchained Melody by Bruce Adams
    The Orchid of the Month for March: Coelogyne Unchained Melody By Bruce Adams Figure 1: Coelogyne Unchained Melody. To the left you will notice a Leptotes pohlitinocoi, a nice little miniature in full bloom with six flowers. (After a few months’ hiatus, we are back with the orchid of the month. Now that spring is underway, I have, for a change, more orchids in bloom than I have time to write about, rather than the other way around.) I will admit that I don’t particularly like white flowers. When I go to orchid shows, I gloss over the big white Phalaenopsis that seem to be requisite at the top of every orchid display. Frankly, I find it rather boring and a waste of good display space! I grow orchids for their unusual color combinations and fantastic shapes, such as found in the pleurothallids and bulbophylums, and I find Catasetum and Stanhopea species to possess amazing flowers with true wow factor. But the reality is that I really cannot grow bulbo’s or catasetums too well, pleuro’s require a lot of attention in our climate, and I just don’t have room for stanhopeas. So this month, I turn my attention to a plant that I ordinarily would not have given a second look: Coelogyne Unchained Melody, a plant which I must have received as a raffle winning, or perhaps from a “fire” sale, at a plant show. Coelogyne Unchained Melody is a primary cross between Coelogyne cristata and Coelogyne flaccida. It blooms in the spring, with hanging spikes of five to ten white flowers with a slightly yellow to orange lip.
    [Show full text]
  • 113. PHOLIDOTA Lindley Ex Hooker, Exot. Fl. 2: Ad T. 138. 1825. 石仙桃属 Shi Xian Tao Shu Chen Xinqi (陈心启 Chen Sing-Chi); Jeffrey J
    Flora of China 25: 335–339. 2009. 113. PHOLIDOTA Lindley ex Hooker, Exot. Fl. 2: ad t. 138. 1825. 石仙桃属 shi xian tao shu Chen Xinqi (陈心启 Chen Sing-chi); Jeffrey J. Wood Herbs, epiphytic or lithophytic, pendulous or erect. Pseudobulbs contiguous or well spaced on creeping rhizomes, ovoid to sub- cylindric, rarely connected to each other at both ends and stemlike or each connected at base by a short rhizome to middle part of another pseudobulb, apex 1- or 2-leaved. Leaves narrowly elliptic, ovate, or oblong, leathery, shortly petiolate. Inflorescence termi- nal, emerging from apex of pseudobulb, distichous, pendulous, slender, racemose, laxly or densely many flowered; rachis often slightly flexuose; floral bracts persistent or deciduous, distichous, large, concave. Flowers resupinate, often not opening widely, white, small, fleshy. Dorsal sepal concave or convex, broadly ovate to elliptic; lateral sepals ovate to ovate-oblong, concave or con- vex, often carinate. Petals ovate to linear, often smaller than sepals; lip sessile, with a saccate basal hypochile and subentire or 3- or 4-lobed; epichile deflexed; disk sometimes with thick veins or lamellae. Column short, upper part winged or hooded, foot absent; anther incumbent; pollinia 4, waxy, subequal in size, in 2 pairs, connected by inconspicuous caudicles to sticky material; rostellum rather large. Capsule relatively small, often ribbed. Thirty species: mainland and SE Asia, Australia, New Guinea, and the Pacific islands; 12 species (two endemic) in China. The genus Pholidota was monographed by de Vogel (Orchid Monogr. 3. 1988). The following species were described or recorded from China but could not be treated here because no specimens were seen by the present authors: Pholidota niana Y.
    [Show full text]
  • Endemic Wild Ornamental Plants from Northwestern Yunnan, China
    HORTSCIENCE 40(6):1612–1619. 2005. have played an important role in world horti- culture and have been introduced to Western countries where they have been widely cul- Endemic Wild Ornamental Plants tivated. Some of the best known examples include Rhododendron, Primula, Gentiana, from Northwestern Yunnan, China Pedicularis, and Saussurea, which are all im- 1 portant genera in northwestern Yunnan (Chen Xiao-Xian Li and Zhe-Kun Zhou et al., 1989; Feng, 1983; Guan et al., 1998; Hu, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P.R. 1990; Shi and Jin, 1999; Yang, 1956;). Many of China 650204 these ornamental species are endemic to small areas of northwestern Yunnan (e.g., Rhododen- Additional index words. horticultural potential dron russatum), therefore, their cultivation not Abstract. Northwestern Yunnan is situated in the southern part of the Hengduan Mountains, only provides for potential sources of income which is a complex and varied natural environment. Consequently, this region supports a generation, but also offers a potential form of great diversity of endemic plants. Using fi eld investigation in combination with analysis conservation management: these plants can of relevant literature and available data, this paper presents a regional ethnobotanical be used directly for their ornamental plant study of this area. Results indicated that northwestern Yunnan has an abundance of wild value or as genetic resources for plant breed- ornamental plants: this study identifi ed 262 endemic species (belonging to 64 genera and ing programs. The aims of current paper are 28 families) with potential ornamental value. The distinguishing features of these wild to describe the unique fl ora of northwestern plants, their characteristics and habitats are analyzed; the ornamental potential of most Yunnan and provide detailed information of plants stems from their wildfl owers, but some species also have ornamental fruits and those resources, in terms of their potential foliage.
    [Show full text]
  • Medicinal Value of Orchid-A Novel Perspective
    Volume 3 – Issue 7 Online ISSN: 2582-368X MEDICINAL VALUE OF ORCHID-A NOVEL PERSPECTIVE Article Id: AL202171 1Raghuram Pawar*, 2S. T. Bhatt and 1R. M.Mangroliya 1Department of Floriculture and Landscape Architecture, Navsari Agricultural University, Navsari -396450, Gujarat, India 2Horticulture Polytechnic Navsari Agricultural University, Navsari -396450, Gujarat, India Email: [email protected] rchids are members of the family Orchidaceae, one of the largest families of flowering plants. The estimated number of orchid species varies from 12,000 to O 35,000, contributing up to 10% of all flowering plant species in the world (Dressler, 1981). Orchids form 9% of our flora, and about 1331 species are reported from India (Mishra, 2007). Orchids are extremely popular for their mesmerizing marvelous flowers in the whole world, but it is in the lesser know that many species are used in traditional systems of medicine and form remedial measures for a number of ailments. Out of many medicinal and aromatic plants, orchids have been used as the traditional system of medicines. This may account for the use of orchids as aphrodisiacs in ancient civilization. When we study the history of the ancient alternative system of medicine, Ayurveda and Traditional Chinese Medicine (TCM) are one of the forefronts. Asthavargha is an important ingredient of various classical Ayurveda formulations like chyawanprasha. Out of eight constituents of Asthavargha, four have been reported to be orchids as „Jivaka‟ (Malaxismuscifera), „Rishbhaka‟ (M. acuminate), „Riddhi‟ (Habenaria intermedia), and „Vriddhi‟ (H. edgeworthii). A wide range of chemical compounds is, presented, including alkaloids, bibenzyle derivatives, flavonoids, phenanthrenes, and terpenoids which have been isolated from various orchids from different parts of the world.
    [Show full text]