Relativity in the Global Positioning System Neil Ashby Dept. of Physics, University of Colorado Boulder, CO 80309–0390 U.S.A.
[email protected] http://physics.colorado.edu/faculty/ashby_n.html Published on 28 January 2003 www.livingreviews.org/Articles/Volume6/2003-1ashby Living Reviews in Relativity Published by the Max Planck Institute for Gravitational Physics Albert Einstein Institute, Germany Abstract The Global Positioning System (GPS) uses accurate, stable atomic clocks in satellites and on the ground to provide world-wide position and time determination. These clocks have gravitational and motional fre- quency shifts which are so large that, without carefully accounting for numerous relativistic effects, the system would not work. This paper dis- cusses the conceptual basis, founded on special and general relativity, for navigation using GPS. Relativistic principles and effects which must be considered include the constancy of the speed of light, the equivalence principle, the Sagnac effect, time dilation, gravitational frequency shifts, and relativity of synchronization. Experimental tests of relativity ob- tained with a GPS receiver aboard the TOPEX/POSEIDON satellite will be discussed. Recently frequency jumps arising from satellite orbit adjust- ments have been identified as relativistic effects. These will be explained and some interesting applications of GPS will be discussed. c 2003 Max-Planck-Gesellschaft and the authors. Further information on copyright is given at http://www.livingreviews.org/Info/Copyright/. For permission to reproduce the article please contact
[email protected]. Article Amendments On author request a Living Reviews article can be amended to include errata and small additions to ensure that the most accurate and up-to-date informa- tion possible is provided.