UC Davis UC Davis Previously Published Works Title Spectral analysis of sample autocovariance matrices of a class of linear time series in moderately high dimensions Permalink https://escholarship.org/uc/item/2rn1d7bm Journal Bernoulli, 23(4A) ISSN 1350-7265 Authors Wang, L Aue, A Paul, D Publication Date 2017-11-01 DOI 10.3150/16-BEJ807 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bernoulli 23(4A), 2017, 2181–2209 DOI: 10.3150/16-BEJ807 Spectral analysis of sample autocovariance matrices of a class of linear time series in moderately high dimensions LILI WANG1, ALEXANDER AUE2,* and DEBASHIS PAUL2,** Dedicated to the memory of Peter Gavin Hall 1Department of Mathematics, Zhejiang University, Hangzhou 310027, China. E-mail:
[email protected] 2Department of Statistics, University of California, Davis, CA 95616, USA. E-mail: *
[email protected]; **
[email protected] This article is concerned with the spectral behavior of p-dimensional linear processes in the moderately high-dimensional case when both dimensionality p and sample size n tend to infinity so that p/n → 0. It is shown that, under an appropriate set of assumptions, the empirical spectral distributions of the renormalized and symmetrized sample autocovariance matrices converge almost surely to a nonrandom limit distribution supported on the real line. The key assumption is that the linear process is driven by a sequence of p- dimensional real or complex random vectors with i.i.d. entries possessing zero mean, unit variance and finite fourth moments, and that the p × p linear process coefficient matrices are Hermitian and simultaneously diagonalizable.