AF Kohn (2006). Autocorrelation and Cross-Correlation Methods. In

Total Page:16

File Type:pdf, Size:1020Kb

AF Kohn (2006). Autocorrelation and Cross-Correlation Methods. In 260 AUTOCORRELATION AND CROSSCORRELATION METHODS A. F. Kohn (2006). Autocorrelation and Cross-Correlation Methods. In: Wiley Encyclopedia of Biomedical Engineering, Ed. Metin Akay, Hoboken: John Wiley & Sons, pp. 260-283. ISBN: 0-471-24967-X. AUTOCORRELATION AND CROSSCORRELATION METHODS ANDRE´ FABIO KOHN University of Sa˜o Paulo Sao Paulo, Brazil 1. INTRODUCTION Any physical quantity that varies with time is a signal. Examples from physiology are being an electrocardiogram (ECG), an electroencephalogram (EEG), an arterial pres- sure waveform, and a variation of someone’s blood glucose concentration along time. In Fig. 1, one one can see ex- amples of two signals: an electromyogram (EMG) in (a) and the corresponding force in (b). When a muscle con- tracts, it generates a force or torque while it generates an electrical signal that is the EMG (1). The experiment to obtain these two signals is simple. The subject is seated with one foot strapped to a pedal coupled to a force or torque meter. Electrodes are attached to a calf muscle of the right foot (m. soleus), and the signal is amplified. The subject is instructed to produce an alternating pressure on the pedal, starting after an initial rest period of about 2.5 s. During this initial period, the foot stays relaxed on the pedal, which corresponds to practically no EMG signal and a small force because of the foot resting on the pedal. When the subject controls voluntarily the alternating con- tractions, the random-looking EMG has waxing and wan- ing modulations in its amplitude while the force also exhibits an oscillating pattern (Fig. 1). Biological signals vary as time goes on, but when they are measured, for example, by a computerized system, the measures are usually only taken at pre-specified times, usually at equal time intervals. In a more formal jargon, it is said that although the original biological signal is de- fined in continuous time, the measured biological signal is defined in discrete time. For continuous-time signals, the time variable t takes values either from 1 to þ1(in theory) or in an interval between t1 and t2 (a subset of the real numbers, t1 indicating the time when the signal AUTOCORRELATION AND CROSSCORRELATION METHODS 261 estimated by 5000 P 1 NÀ1 ðwðiÞw ÞðhðiÞhÞ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiN i ¼ 0 r ¼ P P ; ð1Þ 0 1 NÀ1 2 1 NÀ1 2 N i ¼ 0 ðwðiÞw Þ Á N i ¼ 0 ðhðiÞhÞ − 5000 where ½wðiÞ; hðiÞ, i ¼ 0; 1; 2; ...; N À 1 are the N pairs of 0 5 10 15 20 measurements (e.g., from subject number 0 up to subject number N À 1); w and h are the mean values computed (a) from the N values of w(i) and h(i), respectively. Sometimes 1000 r is called the linear correlation coefficient to emphasize that it quantifies the degree of linear relation between two 800 variables. If the correlation coefficient between the two 600 variables w and h is near the maximum value 1, it is said that the variables have a strong positive linear correla- 400 tion, and the measurements will gather around a line with positive slope when one variable is plotted against the 200 other. On the contrary, if the correlation coefficient is near 0 the minimum attainable value of À 1, it is said that the 0510 15 20 two variables have a strong negative linear correlation. In t (s) this case, the measured points will gather around a neg- (b) atively sloped line. If the correlation coefficient is near the Figure 1. Two signals obtained from an experiment involving a value 0, the two variables are not linearly correlated and human pressing a pedal with his right foot. (a) The EMG of the the plot of the measured points will show a spread that soleus muscle and (b) the force or torque applied to the pedal are does not follow any specific straight line. Here, it may be represented. The abscissae are in seconds and the ordinates are in important to note that two variables may have a strong arbitrary units. The ordinate calibration is not important here nonlinear correlation and yet have almost zero value because in the computation of the correlation a division by the for the linear correlation coefficient r. For example, standard deviation of each signal exists. Only the first 20 s of 100 normally distributed random samples were generated the data are shown here. A 30 s data record was used to compute by computer for a variable h, whereas variable w the graphs of Figs. 2 and 3. was computed according to the quadratic relation w ¼ 300 ðh À hÞ2 þ 50. A plot of the pairs of points ðw; hÞ will show that the samples follow a parabola, which means started being observed in the experiment and t2 the final that they are strongly correlated along such a parabola. time of observation). Such signals are indicated as y(t), On the other hand, the value of r was 0.0373. Statistical x(t), w(t), and so on. On the other hand, a discrete-time analysis suggests that such a low value of linear correla- signal is a set of measurements taken sequentially in tion is not significantly different to zero. Therefore, a near time (e.g., at every millisecond). Each measurement point zero value of r does not necessarily mean the two variables is usually called a sample, and a discrete-time signal is are not associated with one another, it could mean indicated by by y(n), x(n), and w(n), where the index n is that they are nonlinearly associated (see Extensions and an integer that points to the order of the measurements in Further Applications). the sequence. Note that the time interval T between two On the other hand, a random signal is a broadening of adjacent samples is not shown explicitly in the y(n) rep- the concept of a random variable by the introduction of resentation, but this information is used whenever an in- variations along time and is part of the theory of random terpretation is required based on continuous-time units processes. Many biological signals vary in a random way (e.g., seconds). As a result of the low price of computers in time (e.g., the EMG in Fig. 1) and hence their mathe- and microprocessors, almost any equipment used today matical characterization has to rely on probabilistic con- in medicine or biomedical research uses digital signal cepts (3–5). For a random signal, the mean and the processing, which means that the signals are functions autocorrelation are useful quantifiers, the first indicating of discrete time. the constant level about which the signal varies and the From basic probability and statistics theory, it is known second indicating the statistical dependencies between the that in the analysis of a random variable (e.g., the height values of two samples taken at a certain time interval. The of a population of human subjects), the mean and the time relationship between two random signals may be an- variance are very useful quantifiers (2). When studying alyzed by the cross-correlation, which is very often used in the linear relationship between two random variables biomedical research. (e.g., the height and the weight of individuals in a popu- Let us analyze briefly the problem of studying quanti- lation), the correlation coefficient is an extremely useful tatively the time relationship between the two signals quantifier (2). The correlation coefficient between N shown in Fig. 1. Although the EMG in Fig. 1a looks measurements of pairs of random variables, such as erratic, its amplitude modulations seem to have some pe- the weight w and height h of human subjects, may be riodicity. Such slow amplitude modulations are sometimes 262 AUTOCORRELATION AND CROSSCORRELATION METHODS called the ‘‘envelope’’ of the signal, which may be esti- negative delay, meaning the EMG precedes the soleus mated by smoothing the absolute value of the signal. The muscle force. Many factors, experimental and physiologic, force in Fig. 1b is much less erratic and exhibits a clearer contribute to such a delay between the electrical activity of oscillation. Questions that may develop regarding such the muscle and the torque exerted by the foot. signals (the EMG envelope and the force) include: what Signal processing tools such as the autocorrelation and periodicities are involved in the two signals? Are they the the cross-correlation have been used with much success in same in the two signals? If so, is there a delay between the a number of biomedical research projects. A few examples two oscillations? What are the physiological interpreta- will be cited for illustrative purposes. In a study of absence tions? To answer the questions on the periodicities of each epileptic seizures in animals, the cross-correlation be- signal, one may analyze their respective autocorrelation tween waves obtained from the cortex and a brain region functions, as shown in Fig. 2. The autocorrelation of the called the subthalamic nucleus was a key tool to show that absolute value of the EMG (a simple estimate of the en- the two regions have their activities synchronized by a velope) shown in Fig. 2a has low-amplitude oscillations, specific corticothalamic network (6). The cross-correlation those of the force (Fig. 2b) are large, but both have the function was used in Ref. 7 to show that insulin secretion same periodicity. The much lower amplitude oscillations by the pancreas is an important determinant of insulin in the autocorrelation function of the absolute value of the clearance by the liver. In a study of preterm neonates, it EMG when compared with that of the force autocorrela- was shown in Ref.
Recommended publications
  • Power Comparisons of Five Most Commonly Used Autocorrelation Tests
    Pak.j.stat.oper.res. Vol.16 No. 1 2020 pp119-130 DOI: http://dx.doi.org/10.18187/pjsor.v16i1.2691 Pakistan Journal of Statistics and Operation Research Power Comparisons of Five Most Commonly Used Autocorrelation Tests Stanislaus S. Uyanto School of Economics and Business, Atma Jaya Catholic University of Indonesia, [email protected] Abstract In regression analysis, autocorrelation of the error terms violates the ordinary least squares assumption that the error terms are uncorrelated. The consequence is that the estimates of coefficients and their standard errors will be wrong if the autocorrelation is ignored. There are many tests for autocorrelation, we want to know which test is more powerful. We use Monte Carlo methods to compare the power of five most commonly used tests for autocorrelation, namely Durbin-Watson, Breusch-Godfrey, Box–Pierce, Ljung Box, and Runs tests in two different linear regression models. The results indicate the Durbin-Watson test performs better in the regression model without lagged dependent variable, although the advantage over the other tests reduce with increasing autocorrelation and sample sizes. For the model with lagged dependent variable, the Breusch-Godfrey test is generally superior to the other tests. Key Words: Correlated error terms; Ordinary least squares assumption; Residuals; Regression diagnostic; Lagged dependent variable. Mathematical Subject Classification: 62J05; 62J20. 1. Introduction An important assumption of the classical linear regression model states that there is no autocorrelation in the error terms. Autocorrelation of the error terms violates the ordinary least squares assumption that the error terms are uncorrelated, meaning that the Gauss Markov theorem (Plackett, 1949, 1950; Greene, 2018) does not apply, and that ordinary least squares estimators are no longer the best linear unbiased estimators.
    [Show full text]
  • Autocovariance Function Estimation Via Penalized Regression
    Autocovariance Function Estimation via Penalized Regression Lina Liao, Cheolwoo Park Department of Statistics, University of Georgia, Athens, GA 30602, USA Jan Hannig Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC 27599, USA Kee-Hoon Kang Department of Statistics, Hankuk University of Foreign Studies, Yongin, 449-791, Korea Abstract The work revisits the autocovariance function estimation, a fundamental problem in statistical inference for time series. We convert the function estimation problem into constrained penalized regression with a generalized penalty that provides us with flexible and accurate estimation, and study the asymptotic properties of the proposed estimator. In case of a nonzero mean time series, we apply a penalized regression technique to a differenced time series, which does not require a separate detrending procedure. In penalized regression, selection of tuning parameters is critical and we propose four different data-driven criteria to determine them. A simulation study shows effectiveness of the tuning parameter selection and that the proposed approach is superior to three existing methods. We also briefly discuss the extension of the proposed approach to interval-valued time series. Some key words: Autocovariance function; Differenced time series; Regularization; Time series; Tuning parameter selection. 1 1 Introduction Let fYt; t 2 T g be a stochastic process such that V ar(Yt) < 1, for all t 2 T . The autoco- variance function of fYtg is given as γ(s; t) = Cov(Ys;Yt) for all s; t 2 T . In this work, we consider a regularly sampled time series f(i; Yi); i = 1; ··· ; ng. Its model can be written as Yi = g(i) + i; i = 1; : : : ; n; (1.1) where g is a smooth deterministic function and the error is assumed to be a weakly stationary 2 process with E(i) = 0, V ar(i) = σ and Cov(i; j) = γ(ji − jj) for all i; j = 1; : : : ; n: The estimation of the autocovariance function γ (or autocorrelation function) is crucial to determine the degree of serial correlation in a time series.
    [Show full text]
  • LECTURES 2 - 3 : Stochastic Processes, Autocorrelation Function
    LECTURES 2 - 3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series fXtg is a series of observations taken sequentially over time: xt is an observation recorded at a specific time t. Characteristics of times series data: observations are dependent, become available at equally spaced time points and are time-ordered. This is a discrete time series. The purposes of time series analysis are to model and to predict or forecast future values of a series based on the history of that series. 2.2 Some descriptive techniques. (Based on [BD] x1.3 and x1.4) ......................................................................................... Take a step backwards: how do we describe a r.v. or a random vector? ² for a r.v. X: 2 d.f. FX (x) := P (X · x), mean ¹ = EX and variance σ = V ar(X). ² for a r.vector (X1;X2): joint d.f. FX1;X2 (x1; x2) := P (X1 · x1;X2 · x2), marginal d.f.FX1 (x1) := P (X1 · x1) ´ FX1;X2 (x1; 1) 2 2 mean vector (¹1; ¹2) = (EX1; EX2), variances σ1 = V ar(X1); σ2 = V ar(X2), and covariance Cov(X1;X2) = E(X1 ¡ ¹1)(X2 ¡ ¹2) ´ E(X1X2) ¡ ¹1¹2. Often we use correlation = normalized covariance: Cor(X1;X2) = Cov(X1;X2)=fσ1σ2g ......................................................................................... To describe a process X1;X2;::: we define (i) Def. Distribution function: (fi-di) d.f. Ft1:::tn (x1; : : : ; xn) = P (Xt1 · x1;:::;Xtn · xn); i.e. this is the joint d.f. for the vector (Xt1 ;:::;Xtn ). (ii) First- and Second-order moments. ² Mean: ¹X (t) = EXt 2 2 2 2 ² Variance: σX (t) = E(Xt ¡ ¹X (t)) ´ EXt ¡ ¹X (t) 1 ² Autocovariance function: γX (t; s) = Cov(Xt;Xs) = E[(Xt ¡ ¹X (t))(Xs ¡ ¹X (s))] ´ E(XtXs) ¡ ¹X (t)¹X (s) (Note: this is an infinite matrix).
    [Show full text]
  • 5. the Student T Distribution
    Virtual Laboratories > 4. Special Distributions > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5. The Student t Distribution In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a standardized version of the sample mean when the underlying distribution is normal. The Probability Density Function Suppose that Z has the standard normal distribution, V has the chi-squared distribution with n degrees of freedom, and that Z and V are independent. Let Z T= √V/n In the following exercise, you will show that T has probability density function given by −(n +1) /2 Γ((n + 1) / 2) t2 f(t)= 1 + , t∈ℝ ( n ) √n π Γ(n / 2) 1. Show that T has the given probability density function by using the following steps. n a. Show first that the conditional distribution of T given V=v is normal with mean 0 a nd variance v . b. Use (a) to find the joint probability density function of (T,V). c. Integrate the joint probability density function in (b) with respect to v to find the probability density function of T. The distribution of T is known as the Student t distribution with n degree of freedom. The distribution is well defined for any n > 0, but in practice, only positive integer values of n are of interest. This distribution was first studied by William Gosset, who published under the pseudonym Student. In addition to supplying the proof, Exercise 1 provides a good way of thinking of the t distribution: the t distribution arises when the variance of a mean 0 normal distribution is randomized in a certain way.
    [Show full text]
  • Alternative Tests for Time Series Dependence Based on Autocorrelation Coefficients
    Alternative Tests for Time Series Dependence Based on Autocorrelation Coefficients Richard M. Levich and Rosario C. Rizzo * Current Draft: December 1998 Abstract: When autocorrelation is small, existing statistical techniques may not be powerful enough to reject the hypothesis that a series is free of autocorrelation. We propose two new and simple statistical tests (RHO and PHI) based on the unweighted sum of autocorrelation and partial autocorrelation coefficients. We analyze a set of simulated data to show the higher power of RHO and PHI in comparison to conventional tests for autocorrelation, especially in the presence of small but persistent autocorrelation. We show an application of our tests to data on currency futures to demonstrate their practical use. Finally, we indicate how our methodology could be used for a new class of time series models (the Generalized Autoregressive, or GAR models) that take into account the presence of small but persistent autocorrelation. _______________________________________________________________ An earlier version of this paper was presented at the Symposium on Global Integration and Competition, sponsored by the Center for Japan-U.S. Business and Economic Studies, Stern School of Business, New York University, March 27-28, 1997. We thank Paul Samuelson and the other participants at that conference for useful comments. * Stern School of Business, New York University and Research Department, Bank of Italy, respectively. 1 1. Introduction Economic time series are often characterized by positive
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]
  • 3 Autocorrelation
    3 Autocorrelation Autocorrelation refers to the correlation of a time series with its own past and future values. Autocorrelation is also sometimes called “lagged correlation” or “serial correlation”, which refers to the correlation between members of a series of numbers arranged in time. Positive autocorrelation might be considered a specific form of “persistence”, a tendency for a system to remain in the same state from one observation to the next. For example, the likelihood of tomorrow being rainy is greater if today is rainy than if today is dry. Geophysical time series are frequently autocorrelated because of inertia or carryover processes in the physical system. For example, the slowly evolving and moving low pressure systems in the atmosphere might impart persistence to daily rainfall. Or the slow drainage of groundwater reserves might impart correlation to successive annual flows of a river. Or stored photosynthates might impart correlation to successive annual values of tree-ring indices. Autocorrelation complicates the application of statistical tests by reducing the effective sample size. Autocorrelation can also complicate the identification of significant covariance or correlation between time series (e.g., precipitation with a tree-ring series). Autocorrelation implies that a time series is predictable, probabilistically, as future values are correlated with current and past values. Three tools for assessing the autocorrelation of a time series are (1) the time series plot, (2) the lagged scatterplot, and (3) the autocorrelation function. 3.1 Time series plot Positively autocorrelated series are sometimes referred to as persistent because positive departures from the mean tend to be followed by positive depatures from the mean, and negative departures from the mean tend to be followed by negative departures (Figure 3.1).
    [Show full text]
  • Random Variables and Probability Distributions 1.1
    RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS 1. DISCRETE RANDOM VARIABLES 1.1. Definition of a Discrete Random Variable. A random variable X is said to be discrete if it can assume only a finite or countable infinite number of distinct values. A discrete random variable can be defined on both a countable or uncountable sample space. 1.2. Probability for a discrete random variable. The probability that X takes on the value x, P(X=x), is defined as the sum of the probabilities of all sample points in Ω that are assigned the value x. We may denote P(X=x) by p(x) or pX (x). The expression pX (x) is a function that assigns probabilities to each possible value x; thus it is often called the probability function for the random variable X. 1.3. Probability distribution for a discrete random variable. The probability distribution for a discrete random variable X can be represented by a formula, a table, or a graph, which provides pX (x) = P(X=x) for all x. The probability distribution for a discrete random variable assigns nonzero probabilities to only a countable number of distinct x values. Any value x not explicitly assigned a positive probability is understood to be such that P(X=x) = 0. The function pX (x)= P(X=x) for each x within the range of X is called the probability distribution of X. It is often called the probability mass function for the discrete random variable X. 1.4. Properties of the probability distribution for a discrete random variable.
    [Show full text]
  • Spatial Autocorrelation: Covariance and Semivariance Semivariance
    Spatial Autocorrelation: Covariance and Semivariancence Lily Housese ­P eters GEOG 593 November 10, 2009 Quantitative Terrain Descriptorsrs Covariance and Semivariogram areare numericc methods used to describe the character of the terrain (ex. Terrain roughness, irregularity) Terrain character has important implications for: 1. the type of sampling strategy chosen 2. estimating DTM accuracy (after sampling and reconstruction) Spatial Autocorrelationon The First Law of Geography ““ Everything is related to everything else, but near things are moo re related than distant things.” (Waldo Tobler) The value of a variable at one point in space is related to the value of that same variable in a nearby location Ex. Moranan ’s I, Gearyary ’s C, LISA Positive Spatial Autocorrelation (Neighbors are similar) Negative Spatial Autocorrelation (Neighbors are dissimilar) R(d) = correlation coefficient of all the points with horizontal interval (d) Covariance The degree of similarity between pairs of surface points The value of similarity is an indicator of the complexity of the terrain surface Smaller the similarity = more complex the terrain surface V = Variance calculated from all N points Cov (d) = Covariance of all points with horizontal interval d Z i = Height of point i M = average height of all points Z i+d = elevation of the point with an interval of d from i Semivariancee Expresses the degree of relationship between points on a surface Equal to half the variance of the differences between all possible points spaced a constant distance apart
    [Show full text]
  • Modeling and Generating Multivariate Time Series with Arbitrary Marginals Using a Vector Autoregressive Technique
    Modeling and Generating Multivariate Time Series with Arbitrary Marginals Using a Vector Autoregressive Technique Bahar Deler Barry L. Nelson Dept. of IE & MS, Northwestern University September 2000 Abstract We present a model for representing stationary multivariate time series with arbitrary mar- ginal distributions and autocorrelation structures and describe how to generate data quickly and accurately to drive computer simulations. The central idea is to transform a Gaussian vector autoregressive process into the desired multivariate time-series input process that we presume as having a VARTA (Vector-Autoregressive-To-Anything) distribution. We manipulate the correlation structure of the Gaussian vector autoregressive process so that we achieve the desired correlation structure for the simulation input process. For the purpose of computational efficiency, we provide a numerical method, which incorporates a numerical-search procedure and a numerical-integration technique, for solving this correlation-matching problem. Keywords: Computer simulation, vector autoregressive process, vector time series, multivariate input mod- eling, numerical integration. 1 1 Introduction Representing the uncertainty or randomness in a simulated system by an input model is one of the challenging problems in the practical application of computer simulation. There are an abundance of examples, from manufacturing to service applications, where input modeling is critical; e.g., modeling the time to failure for a machining process, the demand per unit time for inventory of a product, or the times between arrivals of calls to a call center. Further, building a large- scale discrete-event stochastic simulation model may require the development of a large number of, possibly multivariate, input models. Development of these models is facilitated by accurate and automated (or nearly automated) input modeling support.
    [Show full text]
  • Random Processes
    Chapter 6 Random Processes Random Process • A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). • For a fixed (sample path): a random process is a time varying function, e.g., a signal. – For fixed t: a random process is a random variable. • If one scans all possible outcomes of the underlying random experiment, we shall get an ensemble of signals. • Random Process can be continuous or discrete • Real random process also called stochastic process – Example: Noise source (Noise can often be modeled as a Gaussian random process. An Ensemble of Signals Remember: RV maps Events à Constants RP maps Events à f(t) RP: Discrete and Continuous The set of all possible sample functions {v(t, E i)} is called the ensemble and defines the random process v(t) that describes the noise source. Sample functions of a binary random process. RP Characterization • Random variables x 1 , x 2 , . , x n represent amplitudes of sample functions at t 5 t 1 , t 2 , . , t n . – A random process can, therefore, be viewed as a collection of an infinite number of random variables: RP Characterization – First Order • CDF • PDF • Mean • Mean-Square Statistics of a Random Process RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function of timeà We use second order estimation RP Characterization – Second Order • The first order does not provide sufficient information as to how rapidly the RP is changing as a function
    [Show full text]
  • On the Use of the Autocorrelation and Covariance Methods for Feedforward Control of Transverse Angle and Position Jitter in Linear Particle Beam Accelerators*
    '^C 7 ON THE USE OF THE AUTOCORRELATION AND COVARIANCE METHODS FOR FEEDFORWARD CONTROL OF TRANSVERSE ANGLE AND POSITION JITTER IN LINEAR PARTICLE BEAM ACCELERATORS* Dean S. Ban- Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 ABSTRACT It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter m pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually "learns" the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth. INTRODUCTION Figure 1 shows the standard setup for a feedforward transverse jitter control system. Note that one pickup #1 and two kickers are needed to correct beam position jitter, while two pickup #l's and one kicker are needed to correct beam trajectory-angle jitter. pickup #1 kicker pickup #2 Beam Fast loop Slow loop Processor Figure 1. Feedforward Transverse Jitter Control System It is assumed that the beam is fast enough to beat the correction signal (through the fast loop) to the kicker.
    [Show full text]