A Look at the EROS Operating System Jonathan S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CHERI Instruction-Set Architecture
UCAM-CL-TR-876 Technical Report ISSN 1476-2986 Number 876 Computer Laboratory Capability Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Robert Norton, Stacey Son September 2015 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 http://www.cl.cam.ac.uk/ c 2015 Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Jonathan Anderson, David Chisnall, Brooks Davis, Alexandre Joannou, Ben Laurie, Simon W. Moore, Steven J. Murdoch, Robert Norton, Stacey Son, SRI International Approved for public release; distribution is unlimited. Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and FA8750-11-C-0249 (“MRC2”) as part of the DARPA CRASH and DARPA MRC research programs. The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the Department of Defense or the U.S. Government. Additional support was received from St John’s College Cambridge, the SOAAP Google Focused Research Award, the RCUK’s Horizon Digital Economy Research Hub Grant (EP/G065802/1), the EPSRC REMS Programme Grant (EP/K008528/1), the Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), and Thales E-Security. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: http://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Abstract This technical report describes CHERI ISAv4, the fourth version of the Capability Hardware Enhanced RISC Instructions (CHERI) Instruction-Set Architecture (ISA)1 being developed by SRI International and the University of Cambridge. -
Access Control and Operating System
Outline (may not finish in one lecture) Access Control and Operating Access Control Concepts Secure OS System Security • Matrix, ACL, Capabilities • Methods for resisting • Multi-level security (MLS) stronger attacks OS Mechanisms Assurance • Multics • Orange Book, TCSEC John Mitchell – Ring structure • Common Criteria • Amoeba • Windows 2000 – Distributed, capabilities certification • Unix Some Limitations – File system, Setuid • Information flow • Windows • Covert channels – File system, Tokens, EFS • SE Linux – Role-based, Domain type enforcement Access control Access control matrix [Lampson] Common Assumption Objects • System knows who the user is File 1 File 2 File 3 … File n – User has entered a name and password, or other info • Access requests pass through gatekeeper User 1 read write - - read – OS must be designed monitor cannot be bypassed User 2 write write write - - Reference Subjects monitor User 3 - - - read read User process ? Resource … User m read write read write read Decide whether user can apply operation to resource Two implementation concepts Capabilities Access control list (ACL) File 1 File 2 … Operating system concept • “… of the future and always will be …” • Store column of matrix User 1 read write - Examples with the resource User 2 write write - • Dennis and van Horn, MIT PDP-1 Timesharing Capability User 3 - - read • Hydra, StarOS, Intel iAPX 432, Eros, … • User holds a “ticket” for … • Amoeba: distributed, unforgeable tickets each resource User m read write write • Two variations References – store -
Research Purpose Operating Systems – a Wide Survey
GESJ: Computer Science and Telecommunications 2010|No.3(26) ISSN 1512-1232 RESEARCH PURPOSE OPERATING SYSTEMS – A WIDE SURVEY Pinaki Chakraborty School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi – 110067, India. E-mail: [email protected] Abstract Operating systems constitute a class of vital software. A plethora of operating systems, of different types and developed by different manufacturers over the years, are available now. This paper concentrates on research purpose operating systems because many of them have high technological significance and they have been vividly documented in the research literature. Thirty-four academic and research purpose operating systems have been briefly reviewed in this paper. It was observed that the microkernel based architecture is being used widely to design research purpose operating systems. It was also noticed that object oriented operating systems are emerging as a promising option. Hence, the paper concludes by suggesting a study of the scope of microkernel based object oriented operating systems. Keywords: Operating system, research purpose operating system, object oriented operating system, microkernel 1. Introduction An operating system is a software that manages all the resources of a computer, both hardware and software, and provides an environment in which a user can execute programs in a convenient and efficient manner [1]. However, the principles and concepts used in the operating systems were not standardized in a day. In fact, operating systems have been evolving through the years [2]. There were no operating systems in the early computers. In those systems, every program required full hardware specification to execute correctly and perform each trivial task, and its own drivers for peripheral devices like card readers and line printers. -
Mixed-Criticality Scheduling and Resource Sharing for High-Assurance Operating Systems
Mixed-Criticality Scheduling and Resource Sharing for High-Assurance Operating Systems Anna Lyons Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science and Engineering University of New South Wales Sydney, Australia September 2018 Abstract Criticality of a software system refers to the severity of the impact of a failure. In a high-criticality system, failure risks significant loss of life or damage to the environ- ment. In a low-criticality system, failure may risk a downgrade in user-experience. As criticality of a software system increases, so too does the cost and time to develop that software: raising the criticality also raises the assurance level, with the highest levels requiring extensive, expensive, independent certification. For modern cyber-physical systems, including autonomous aircraft and other vehicles, the traditional approach of isolating systems of different criticality by using completely separate physical hardware, is no longer practical, being both restrictive and inefficient. The result is mixed-criticality systems, where software applications with different criticalities execute on the same hardware. Sufficient mechanisms are required to ascertain that software in mixed-criticality systems is sufficiently isolated, otherwise, all software on that hardware is promoted to the highest criticality level, driving up costs to impractical levels. For mixed-criticality systems to be viable, both spatial and temporal isolation are required. Current aviation standards allow for mixed-criticality systems where temporal and spatial resources are strictly and statically partitioned in time and space, allowing some improvement over fully isolated hardware. However, further improvements are not only possible, but required for future innovation in cyber-physical systems. -
Os Verification - a Survey As a Source of Future Challenges
International Journal of Computer Science & Engineering Survey (IJCSES) Vol.6, No.4, August 2015 OS VERIFICATION - A SURVEY AS A SOURCE OF FUTURE CHALLENGES Kushal Anjaria and Arun Mishra Department of Computer Science &Engineering, DIAT, Pune, India ABSTRACT Formal verification of an operating system kernel manifests absence of errors in the kernel and establishes trust in it. This paper evaluates various projects on operating system kernel verification and presents in- depth survey of them. The methodologies and contributions of operating system verification projects have been discussed in the present work. At the end, few unattended and interesting future challenges in operating system verification area have been discussed and possible directions towards the challenge solution have been described in brief. KEYWORDS Formal verification, operating system, kernel. 1. INTRODUCTION The security and reliability of computer system is dependent on the underlying operating system kernel; kernel is the core of operating system. The kernel provide mechanism for user level applications to access hardware, scheduling and inter-process communication. Therefore, if anything goes wrong in the kernel while programming or implementation, it will affect the operation of entire system. To ensure the correct working of a kernel, testing and/or verification techniques have been used. Testing reduces frequency of failures, while verification detects errors and eliminates failures. Consider the fragment of C code shown in figure-1 int div(int p, int q) { int r; if (p<q) r=p/q; else r=q/p; return r; } Figure1. Fragment of C code Here r being an integer, if testing has been performed with p=8, q=4 and p=16, q=32, full coverage of code can be achieved. -
Acknowledgments Preface 1 Overview I MICRO ERNEL ABSTRACTIONS
Coyotos Microkernel Specification http://coyotos.org/docs/ukernel/spec.html Coyotos Microkernel Specification Version 0.3+ March 20, 2006 Jonathan S. Shapiro, Ph.D., Eric Northup, M. Scott Doerrie, Swaroop Sridhar Systems Research Laboratory Dept. of Computer Science Johns Hopkins University Neal H. Walfield, Marcus Brinkmann GNU Hurd Project Copyright 2006, Jonathan S. Shapiro. Verbatim copies of this document may be duplicated or distributed in print or electronic form for non-commercial purposes. Legal Notice THIS SPECIFICATION IS PROVIDED ``AS IS'' WITHOUT ANY WARRANTIES, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. Table of Contents Acknowledgments Preface The Original Plan Overrun by the Hurd Coyotos: Take II A Brief Word on Terminology 1 Overview 1.1 Microkernel Objects 1.2 Sender Capabilities 1.3 Activations 1.4 Messages 1.5 Naming and Invocation 1.6 Exception and Interrupt Handling 1.7 Protection Model I MICROKERNEL ABSTRACTIONS 2 Capabilities 2.1 Representation 2.1.1 Capabilities to Memory Objects 2.1.2 Message-Related Capabilities 2.1.3 Capabilities to Processes 2.1.4 Miscellaneous Capabilities 2.2 Validity 2.3 Extensibility 3 Processes 3.1 State of a Process 3.2 FCRBs 3.3 Execution Model 3.3.1 Event Arrival and Run-In 3.3.2 Preemption 3.3.3 Exception Handling 1 of 38 04/10/06 11:19 Coyotos Microkernel Specification http://coyotos.org/docs/ukernel/spec.html 3.4 Event Delivery 4 Address Spaces 4.1 Memory -
Operating System Verification—An Overview
Sadhan¯ a¯ Vol. 34, Part 1, February 2009, pp. 27–69. © Printed in India Operating system verification—An overview GERWIN KLEIN Sydney Research Laboratory, NICTA,∗ Australia, School of Computer Science and Engineering, University of New South Wales, Sydney, Australia e-mail: [email protected] Abstract. This paper gives a high-level introduction to the topic of formal, interactive, machine-checked software verification in general, and the verification of operating systems code in particular. We survey the state of the art, the advantages and limitations of machine-checked code proofs, and describe two specific ongoing larger-scale verification projects in more detail. Keywords. Formal software verification; operating systems; theorem proving. 1. Introduction The fastest, cheapest and easiest way to build something is properly the first time (Parker 2007). This engineer’s credo has made it into popular literature, but it seems to be largely ignored in the world of software development. In the late 1960s a software crisis was diagnosed on a summit in the Bavarian Alps (Naur & Randell 1969): Software was getting more and more complex, and we had no structured way of building it. We ended up with projects that took significantly longer than planned, were more expensive than planned, delivered results that did not fully address customer needs, or at worst were useless. This summit in the late 1960s is widely seen as the birth of the discipline of software engineering. Now, almost 40 years later, we have come a long way. There are numerous books on software engineering, a plenitude of methodologies, programming languages, and processes to choose from. -
Scalability of Microkernel-Based Systems
Scalability of Microkernel-Based Systems Zur Erlangung des akademischen Grades eines DOKTORS DER INGENIERWISSENSCHAFTEN von der Fakultat¨ fur¨ Informatik der Universitat¨ Fridericiana zu Karlsruhe (TH) genehmigte DISSERTATION von Volkmar Uhlig aus Dresden Tag der mundlichen¨ Prufung:¨ 30.05.2005 Hauptreferent: Prof. Dr. rer. nat. Gerhard Goos Universitat¨ Fridericiana zu Karlsruhe (TH) Korreferent: Prof. Dr. sc. tech. (ETH) Gernot Heiser University of New South Wales, Sydney, Australia Karlsruhe: 15.06.2005 i Abstract Microkernel-based systems divide the operating system functionality into individ- ual and isolated components. The system components are subject to application- class protection and isolation. This structuring method has a number of benefits, such as fault isolation between system components, safe extensibility, co-existence of different policies, and isolation between mutually distrusting components. How- ever, such strict isolation limits the information flow between subsystems including information that is essential for performance and scalability in multiprocessor sys- tems. Semantically richer kernel abstractions scale at the cost of generality and mini- mality–two desired properties of a microkernel. I propose an architecture that al- lows for dynamic adjustment of scalability-relevant parameters in a general, flex- ible, and safe manner. I introduce isolation boundaries for microkernel resources and the system processors. The boundaries are controlled at user-level. Operating system components and applications can transform their semantic information into three basic parameters relevant for scalability: the involved processors (depending on their relation and interconnect), degree of concurrency, and groups of resources. I developed a set of mechanisms that allow a kernel to: 1. efficiently track processors on a per-resource basis with support for very large number of processors, 2. -
Introduction Course Outline Why Does This Fail? Lectures Tutorials
Course Outline • Prerequisites – COMP2011 Data Organisation • Stacks, queues, hash tables, lists, trees, heaps,…. Introduction – COMP2021 Digital Systems Structure • Assembly programming • Mapping of high-level procedural language to assembly COMP3231/9201/3891/9283 language – or the postgraduate equivalent (Extended) Operating Systems – You are expected to be competent Kevin Elphinstone programmers!!!! • We will be using the C programming language – The dominant language for OS implementation. – Need to understand pointers, pointer arithmetic, explicit 2 memory allocation. Why does this fail? Lectures • Common for all courses (3231/3891/9201/9283) void func(int *x, int *y) • Wednesday, 2-4pm { • Thursday, 5-6pm *x = 1; *y = 2; – All lectures are here (EE LG03) – The lecture notes will be available on the course web site } • Available prior to lectures, when possible. void main() – The lecture notes and textbook are NOT a substitute for { attending lectures. int *a, *b; func(a,b); } 3 4 Tutorials Assignments • Assignments form a substantial component of • Start in week 2 your assessment. • A tutorial participation mark will • They are challenging!!!! – Because operating systems are challenging contribute to your final assessment. • We will be using OS/161, – Participation means participation, NOT – an educational operating system attendance. – developed by the Systems Group At Harvard – Comp9201/3891/9283 students excluded – It contains roughly 20,000 lines of code and comments • You will only get participation marks in your enrolled tutorial. 5 6 1 Assignments Assignments • Assignments are in pairs • Don’t under estimate the time needed to do the – Info on how to pair up available soon assignments. • We usually offer advanced versions of the – ProfQuotes: [About the midterm] "We can't keep you working assignments on it all night, it's not OS.“ Ragde, CS341 – Available bonus marks are small compared to amount of • If you start a couple days before they are due, you will be late. -
El Debat Polític D'ahir; Al Parlament De La Repúb Ica, Desenrotllat En
EL TEMPS. - Al pla de Lleida, Penedès, Bages I Via, hi ha bol· res matinals. Per tota la resta de catalunya el cel està completament se~. pel qual motiu les glaçades I gebrades són tmpartants, I ha experimentat la temperatura un notable descens. Les mlnlmes registrades ahir han tingut lloc a Núria amb 11 graus sota zero I a Adrall I Sant Juilià de VIlatorta, amb 6 graus sota zero. IV _ Núm. 700 - Preue 10 cèntims AnY fundadort LLUIS COMPANYS Barcelona, dijous, s de febrer del 19J4 El MOMENT POUTIC El debat polític d'ahir; al Parlament de la Repúb ica, desenrotllat en un ambient de gran passió, vé a augnientar el confusionisme actual - o Uftfi[H[IA ~·~HJI11IUA[II A~~~R~A IPrieto, en nom dels socialistes, s'expresà en SENSE AUTORITAT NI GAllARDIA termes de gran violència.-Segueix la divisió l dintre el Govern lerroux, destacada novament e S darreres hores A despit de la votació de coníiança al Govern Lerroux, obtingudR en la intervenció de Martínez Barrio del Govern Lerroux després de l'apassionat debat parlamentari d'ahir, la situació politica segueiX més con1usa que mat. Si la crisi era inevitable abans d'ahir, ho és Proposicions llei sobre intensificació del Cultiu. la situació social als camps i espe El senyor ALVAREZ MENDIZA cialment a la provincia de Jaén. (Crònica del nostre redactor a Madrid Alard Prats) .rob apremiant urgencia des d'avui. La sessió parlamentària tingué l'ab· Madrid, 7. - A dos quarts i cmc surd& conseqi.ièncJa de complicar com mat la situació 1 de posar de re BAL presenta una esmena en la L'efervescencia que s'observa al carrer, ha tingut per fi ressò al Parla minuts de cinc comença la sess10 com lleu en el saló de sessions la profunda esquerda del gabinet, sense solda qual demana que es determinin El debat polític ment. -
Labels and Event Processes in the Asbestos Operating System
Labels and Event Processes in the Asbestos Operating System Petros Efstathopoulos∗ Maxwell Krohn† Steve VanDeBogart∗ Cliff Frey† David Ziegler† Eddie Kohler∗ David Mazieres` ‡ Frans Kaashoek† Robert Morris† ∗UCLA †MIT ‡Stanford/NYU http://asbestos.cs.ucla.edu/ ABSTRACT purposes [20]. Most servers instead revert to the most insecure de- sign, monolithic code running with many privileges. It should come Asbestos, a new prototype operating system, provides novel la- as no surprise that high-impact breaches continue. beling and isolation mechanisms that help contain the effects New operating system primitives are needed [21], and the best of exploitable software flaws. Applications can express a wide place to explore candidates is the unconstrained context of a new range of policies with Asbestos’s kernel-enforced label mechanism, OS. Hence the Asbestos operating system, which can enforce strict including controls on inter-process communication and system- application-defined security policies even on efficient, unprivileged wide information flow. A new event process abstraction provides servers. lightweight, isolated contexts within a single process, allowing the same process to act on behalf of multiple users while preventing Asbestos’s contributions are twofold. First, all access control it from leaking any single user’s data to any other user. A Web checks use Asbestos labels, a primitive that combines advantages server that uses Asbestos labels to isolate user data requires about of discretionary and nondiscretionary access control. Labels deter- 1.5 memory pages per user, demonstrating that additional security mine which services a process can invoke and with which other can come at an acceptable cost. processes it can interact. -
Analysing the Security Properties of Object-Capability Patterns
Analysing the Security Properties of Object-Capability Patterns Toby Murray Hertford College Oxford University Computing Laboratory A thesis submitted for the degree of Doctor of Philosophy Hilary Term, 2010 This thesis is dedicated to Bel, who has taught me more than anyone else. Acknowledgements Thanks firstly to my supervisor, Gavin Lowe, whose conscientious and ded- icated supervision of this work improved it, and its presentation, more than I can say, and whose wisdom and guidance were invaluable throughout this entire process. I couldn't have asked for a better supervisor. Gavin also contributed directly to the development of valuable parts of this work, as explained in the statement of authorship that follows. Thanks to Fred Spiessens and Bill Roscoe for examining this thesis. Thanks to Andrew Simpson and Bill Roscoe for their advice and feedback on this work as it progressed during my transfer and confirmation of status. Thanks to Bill Roscoe for valuable discussions about CSP and to Fred Spiessens for the same regarding Scoll and authority. Thanks to the anonymous reviewers of [ML09b] and [ML09a], and those at NICTA, whose feedback helped to improve the presentation in Chapter5. Thanks to David Wagner for useful discussions about authority and cau- sation that ultimately influenced the work in Chapter7, and for indirectly bringing to my attention the need to consider vulnerabilities due to recursive invocation. Thanks to Bill Frantz, David-Sarah Hopwood, Matej Koˇs´ık, Charles Landau, Alex Murray, Mark Seaborn and David Wagner, who helped me assemble Table 2.1. Thanks to all of the people on cap-talk and e-lang, including Mark Miller and Jonathan Shapiro, and all of my old workmates from DSTO's Annex project.