CRISPR-Cas Systems and RNA-Guided Interference Rodolphe Barrangou∗

Total Page:16

File Type:pdf, Size:1020Kb

CRISPR-Cas Systems and RNA-Guided Interference Rodolphe Barrangou∗ Advanced Review CRISPR-Cas systems and RNA-guided interference Rodolphe Barrangou∗ Clustered regularly interspaced short palindromic repeats (CRISPR) together with associated sequences (cas) form the CRISPR-Cas system, which provides adaptive immunity against viruses and plasmids in bacteria and archaea. Immunity is built through acquisition of short stretches of invasive nucleic acids into CRISPR loci as ‘spacers’. These immune markers are transcribed and processed into small noncoding interfering CRISPR RNAs (crRNAs) that guide Cas proteins toward target nucleic acids for specific cleavage of homologous sequences. Mechanistically, CRISPR-Cas systems function in three distinct stages, namely: (1) adaptation, where new spacers are acquired from invasive elements for immunization; (2) crRNA biogenesis, where CRISPR loci are transcribed and processed into small interfering crRNAs; and (3) interference, where crRNAs guide the Cas machinery to specifically cleave homologous invasive nucleic acids. A number of studies have shown that CRISPR-mediated immunity can readily increase the breadth and depth of virus resistance in bacteria and archaea. CRISPR interference can also target plasmid sequences and provide a barrier against the uptake of undesirable mobile genetic elements. These inheritable hypervariable loci provide phylogenetic information that can be insightful for typing purposes, epidemiological studies, and ecological surveys of natural habitats and environmental samples. More recently, the ability to reprogram CRISPR-directed endonuclease activity using customizable small noncoding interfering RNAs has set the stage for novel genome editing and engineering avenues. This review highlights recent studies that revealed the molecular basis of CRISPR-mediated immunity, and discusses applications of crRNA-guided interference. 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs RNA 2013, 4:267–278. doi: 10.1002/wrna.1159 INTRODUCTION CRISPR acronym was coined in 2002, following the observation of similar structures in a number lustered regularly interspaced short palindromic of bacterial and archaeal genomes.2 These loci were repeats (CRISPR) are a relatively novel family C subsequently identified in a variety of bacterial of DNA repeats that was first discovered in 1987, and archaeal organisms, as genome drafts were in an intergenic region adjacent to the iap gene generated and became publicly available. In addition in the Escherichia coli K12 genome.1 This locus to coining the acronym, Jansen et al. established included an array of short identical 29-bp direct that these peculiar DNA repeat arrays were often repeats that were interspaced at regular intervals 2 by stretches of 32 nucleotides. Such loci seemed of associated with CRISPR-associated (cas) sequences. little interest for approximately 15 years, until the Over time, studies have shown that CRISPR-Cas systems generally occur in approximately 45% ∗ of bacterial and approximately 90% of archaeal Correspondence to: [email protected] genomes, as tracked by the CRISPRdb.3 Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA In 2005, three studies nearly simultaneously Conflict of interest: RB is a co-inventor on several patents related established that seemingly random spacer sequences to CRISPR use and applications. actually showed homology to foreign genetic elements Volume 4, May/June 2013 2013 John Wiley & Sons, Ltd. 267 Advanced Review wires.wiley.com/rna such as viruses and plasmids.4–6 This subsequently with the ability to form hairpin structures. Repeats led to the hypothesis that CRISPR-Cas systems may are separated by stretches of unique sequences of be an RNA-mediated immune system, based on comparable length, called ‘spacers’.2 These sequences the presence of several key elements that would are derived from foreign genetic elements such as carry out the necessary functionalities.7 In 2007, plasmids and viruses, and these proto-spacers23 are the first experimental evidence of CRISPR-Cas typically adjacent to a short (2–5 nt) conserved proto- adaptive immunity was provided in Streptococcus spacer adjacent motif (PAM).24–25 While most loci are thermophilus, with evidence that novel spacers were relatively modest in size (∼30 repeats, representing acquired in a polarized manner following phage ∼1.6 kb), they can be large in some systems (up to exposure, with the ability to provide phage resistance nearly 500).3 Although most chromosomes carry 1–2 in a Cas-dependent manner.8 Shortly thereafter, it loci, there are extremophiles that carry 20 CRISPR was shown in E. coli that CRISPR immunity is loci belonging to different CRISPR-Cas systems.3,22 mediated by small noncoding interfering CRISPR Cas proteins constitute a highly genetically poly- RNAs (crRNAs) that guide the CRISPR-associated morphic and functionally diverse family which is complex for antiviral defense (Cascade).9 It was also involved in the various steps of CRISPR-mediated shown in Staphylococcus epidermidis that CRISPR immunity.11–22 There are several distinct Cas protein can provide immunity against plasmid DNA.10 families that have been established, and their number, These milestone studies established that CRISPR-Cas occurrence, distribution, and organization are highly systems provide adaptive immunity against phages variable. Recently, three CRISPR-Cas types have been and plasmids via crRNA-guided interference, and established,22 based on cas phylogeny and differences set the stage for the characterization of the CRISPR in the molecular mechanism of action. Although the molecular mechanism of action in functional CRISPR- most widely distributed functional domain character- Cas model systems. In the recent past, several extensive istic of Cas proteins is the RNA recognition motif or focused reviews have summarized the rapidly (RRM), several Cas families include DNA binding, expanding literature on CRISPR-Cas systems.11–21 RNA binding, helicase and nuclease motifs, reflecting Here, the core elements of CRISPR-Cas systems are their involvement in nucleic acid transactions. presented, the main system types are compared and Cas1 and Cas2, which are universally distributed contrasted, and applications of these RNA-driven across the three types, have been implicated in molecular machines are discussed. the spacer acquisition process.26–29 Cas1 specifically exhibits nuclease activity against single stranded and branched DNA such as Holiday junctions and CRISPR-Cas SYSTEMS replication forks, and may be implicated in the 26 While CRISPR-Cas systems occur in nearly half addition of novel repeats and/or spacers. It is of bacteria and most of archaea, there are vast generally believed that both Cas1 and Cas2 are differences in their distribution, number, size, and involved in novel spacer acquisition (through PAM- components across systems and organisms.11–21 associated foreign DNA sampling), novel repeat Several studies have investigated the many elements synthesis and repeat-spacer insertion at the leader 29 that constitute CRISPR-Cas systems, leading to a new end, as recently reviewed. In addition to these two classification which established three main types and universal cas genes, signature genes define each of the 10 subtypes, based on genetic content, and differences three main CRISPR-Cas types, namely cas3, cas9 and 22 in their crRNA processing and interference molecular cas10 for types I, II, and III, respectively. underpinnings.22 The three main CRISPR-Cas types Overall, CRISPR-Cas systems function in three reflect the origin and evolutionary paths that cas genes distinct stages: (1) adaptation, where new spacers and the proteins they encode have experienced, and are acquired from invasive elements and integrated illustrate their structural and functional differences. into the CRISPR locus for immunization; (2) crRNA biogenesis, where CRISPR loci are transcribed and processed into small interfering crRNAs; and Core Elements of CRISPR-Cas Systems (3) interference, where crRNAs guide the Cas The most peculiar feature of CRISPR-Cas systems machinery to specifically cleave homologous invasive is the array of identical DNA repeats that are nucleic acids. regularly separated by spacers (Figure 1). The CRISPR The leader sequence, generally defined as an repeat sequence is typically short (27–50 nt), with A/T-rich, noncoding stretch of nucleotides located most systems carrying repeats around 30 bp.11–22 upstream of the first CRISPR repeat, and often down- The repeat sequence is often partially palindromic, stream of the last cas gene in the CRISPR operon, 268 2013 John Wiley & Sons, Ltd. Volume 4, May/June 2013 WIREs RNA CRISPR-Cas systems and RNA-guided interference FIGURE 1| CRISPR-Cas elements and mechanism of action. The various elements that constitute CRISPR-Cas systems are graphically depicted, including cas genes (with the universal cas1 and cas2), the leader (L), spacers (boxes), repeats (diamonds). Adaptive immunity is build through acquisition of new spacers at the leader end, which are derived from invasive DNA (here, phage DNA). In the expression stage, the repeat-spacer array is then transcribed as a full-length pre-crRNA, which is processed by cleavage into mature crRNAs. The mature RNAs then form a ribonucleoprotein complex with Cas proteins to mediate interference by guiding endonucleases toward homologous nucleic acid sequences. acts as a promoter for the transcription of the pre- of target DNA.9 Another key protein in
Recommended publications
  • A CRISPR Activation and Interference Toolkit for Industrial Saccharomyces Cerevisiae Strain KE6‑12 Elena Cámara, Ibai Lenitz & Yvonne Nygård*
    www.nature.com/scientificreports OPEN A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6‑12 Elena Cámara, Ibai Lenitz & Yvonne Nygård* Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology‑directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fuorescent protein‑encoding genes under two diferent promoters allowing expression alterations up to ~ 2.5‑fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design‑build‑test cycle for developing various industrial production strains. Te yeast Saccharomyces cerevisiae is one of the most commonly used microorganisms for industrial applications ranging from wine and beer fermentations to the production of biofuels and high-value metabolites1,2. How- ever, some of the current production processes are compromised by low yields and productivities, thus further optimization is required3.
    [Show full text]
  • Quantitative CRISPR Interference Screens in Yeast Identify Chemical-Genetic Interactions and New Rules for Guide RNA Design Justin D
    Smith et al. Genome Biology (2016) 17:45 DOI 10.1186/s13059-016-0900-9 RESEARCH Open Access Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design Justin D. Smith1,2, Sundari Suresh1, Ulrich Schlecht1, Manhong Wu3, Omar Wagih4, Gary Peltz3, Ronald W. Davis1, Lars M. Steinmetz1,2,5, Leopold Parts2,5,6* and Robert P. St.Onge1* Abstract Background: Genome-scale CRISPR interference (CRISPRi) has been used in human cell lines; however, the features of effective guide RNAs (gRNAs) in different organisms have not been well characterized. Here, we define rules that determine gRNA effectiveness for transcriptional repression in Saccharomyces cerevisiae. Results: We create an inducible single plasmid CRISPRi system for gene repression in yeast, and use it to analyze fitness effects of gRNAs under 18 small molecule treatments. Our approach correctly identifies previously described chemical-genetic interactions, as well as a new mechanism of suppressing fluconazole toxicity by repression of the ERG25 gene. Assessment of multiple target loci across treatments using gRNA libraries allows us to determine generalizable features associated with gRNA efficacy. Guides that target regions with low nucleosome occupancy and high chromatin accessibility are clearly more effective. We also find that the best region to target gRNAs is between the transcription start site (TSS) and 200 bp upstream of the TSS. Finally, unlike nuclease-proficient Cas9 in human cells, the specificity of truncated gRNAs (18 nt of complementarity to the target) is not clearly superior to full-length gRNAs (20 nt of complementarity), as truncated gRNAs are generally less potent against both mismatched and perfectly matched targets.
    [Show full text]
  • CRISPR-Cas Systems Restrict Horizontal Gene Transfer In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304717; this version posted September 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRISPR-Cas systems restrict horizontal gene transfer in 2 Pseudomonas aeruginosa 3 Running title: CRISPR-Cas systems in Pseudomonas aeruginosa 4 5 Authors: Rachel M. Wheatley1,* and R. Craig MacLean1 6 7 Affiliations: Department of Zoology, University of Oxford, Oxford OX1 3PS, UK 8 9 Contact details: [email protected] 10 11 Competing interests 12 This project was supported by Wellcome Trust Grant 106918/Z/15/Z held by RCM. The authors declare 13 they have no conflict of interest. 14 15 16 17 18 19 20 21 22 23 24 25 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.19.304717; this version posted September 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 28 Abstract 29 CRISPR-Cas systems provide bacteria and archaea with an adaptive immune system that targets foreign 30 DNA. However, the xenogenic nature of immunity provided by CRISPR-Cas raises the possibility that 31 these systems may constrain horizontal gene transfer. Here we test this hypothesis in the opportunistic 32 pathogen Pseudomonas aeruginosa, which has emerged an important model system for understanding 33 CRISPR-Cas function. Across the diversity of P. aeruginosa, active CRISPR-Cas systems are 34 associated with smaller genomes and a reduced GC content, suggesting that CRISPR-Cas inhibits the 35 acquisition of foreign DNA.
    [Show full text]
  • CRISPR Interference (Crispri) for Gene Regulation and Succinate Production in Cyanobacterium S
    Huang et al. Microb Cell Fact (2016) 15:196 DOI 10.1186/s12934-016-0595-3 Microbial Cell Factories RESEARCH Open Access CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942 Chun‑Hung Huang, Claire R. Shen, Hung Li, Li‑Yu Sung, Meng‑Ying Wu and Yu‑Chen Hu* Abstract Background: Cyanobacterium Synechococcus elongatus PCC 7942 holds promise for biochemical conversion, but gene deletion in PCC 7942 is time-consuming and may be lethal to cells. CRISPR interference (CRISPRi) is an emerging technology that exploits the catalytically inactive Cas9 (dCas9) and single guide RNA (sgRNA) to repress sequence- specific genes without the need of gene knockout, and is repurposed to rewire metabolic networks in various pro‑ caryotic cells. Results: To employ CRISPRi for the manipulation of gene network in PCC 7942, we integrated the cassettes express‑ ing enhanced yellow fluorescent protein (EYFP), dCas9 and sgRNA targeting different regions on eyfp into the PCC 7942 chromosome. Co-expression of dCas9 and sgRNA conferred effective and stable suppression of EYFP produc‑ tion at efficiencies exceeding 99%, without impairing cell growth. We next integrated the dCas9 and sgRNA targeting endogenous genes essential for glycogen accumulation (glgc) and succinate conversion to fumarate (sdhA and sdhB). Transcription levels of glgc, sdhA and sdhB were effectively suppressed with efficiencies depending on the sgRNA binding site. Targeted suppression of glgc reduced the expression to 6.2%, attenuated the glycogen accumulation to 4.8% and significantly enhanced the succinate titer. Targeting sdhA or sdhB also effectively downregulated the gene expression and enhanced the succinate titer 12.5-fold to 0.58–0.63 mg/L.
    [Show full text]
  • RNA Interference in the Age of CRISPR: Will CRISPR Interfere with Rnai?
    International Journal of Molecular Sciences Review RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi? Unnikrishnan Unniyampurath 1, Rajendra Pilankatta 2 and Manoj N. Krishnan 1,* 1 Program on Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; [email protected] 2 Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Nileshwar 671328, India; [email protected] * Correspondence: [email protected]; Tel.: +65-6516-2666 Academic Editor: Michael Ladomery Received: 2 November 2015; Accepted: 15 February 2016; Published: 26 February 2016 Abstract: The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi.
    [Show full text]
  • Development of CRISPR Interference (Crispri) Platform for Metabolic Engineering of Leuconostoc Citreum and Its Application for Engineering Riboflavin Biosynthesis
    International Journal of Molecular Sciences Article Development of CRISPR Interference (CRISPRi) Platform for Metabolic Engineering of Leuconostoc citreum and Its Application for Engineering Riboflavin Biosynthesis Jaewoo Son 1, Seung Hoon Jang 1, Ji Won Cha 1 and Ki Jun Jeong 1,2,* 1 Department of Chemical and Biomolecular Engineering, BK21 Plus program, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea; [email protected] (J.S.); [email protected] (S.H.J.); [email protected] (J.W.C.) 2 Institute for The BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea * Correspondence: [email protected]; Tel.: +82-42-350-3934 Received: 1 July 2020; Accepted: 3 August 2020; Published: 5 August 2020 Abstract: Leuconostoc citreum, a hetero-fermentative type of lactic acid bacteria, is a crucial probiotic candidate because of its ability to promote human health. However, inefficient gene manipulation tools limit its utilization in bioindustries. We report, for the first time, the development of a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference (CRISPRi) system for engineering L. citreum. For reliable expression, the expression system of synthetic single guide RNA (sgRNA) and the deactivated Cas9 of Streptococcus pyogenes (SpdCas9) were constructed in a bicistronic design (BCD) platform using a high-copy-number plasmid. The expression of SpdCas9 and sgRNA was optimized by examining the combination of two synthetic promoters and Shine–Dalgarno sequences; the strong expression of sgRNA and the weak expression of SpdCas9 exhibited the most significant downregulation (20-fold decrease) of the target gene (sfGFP), without cell growth retardation caused by SpdCas9 overexpression.
    [Show full text]
  • Challenges, New Technologies and Their Use in Plants
    International Journal of Molecular Sciences Review Chromatin Manipulation and Editing: Challenges, New Technologies and Their Use in Plants Kateryna Fal 1,† , Denisa Tomkova 2,†, Gilles Vachon 1 , Marie-Edith Chabouté 2, Alexandre Berr 2,* and Cristel C. Carles 1,* 1 Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-LPCV, 38000 Grenoble, France; [email protected] (K.F.); [email protected] (G.V.) 2 Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France; [email protected] (D.T.); [email protected] (M.-E.C.) * Correspondence: [email protected] (A.B.); [email protected] (C.C.C.) † These authors contributed equally to this work. Abstract: An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks.
    [Show full text]
  • An Inducible CRISPR Interference Library for Genetic Interrogation Of
    ARTICLE https://doi.org/10.1038/s42003-020-01452-9 OPEN An inducible CRISPR interference library for genetic interrogation of Saccharomyces cerevisiae biology ✉ Amir Momen-Roknabadi 1,2,3,4, Panos Oikonomou 1,2,3,4, Maxwell Zegans 2 & Saeed Tavazoie 1,2,3 1234567890():,; Genome-scale CRISPR interference (CRISPRi) is widely utilized to study cellular processes in a variety of organisms. Despite the dominance of Saccharomyces cerevisiae as a model eukaryote, an inducible genome-wide CRISPRi library in yeast has not yet been presented. Here, we present a genome-wide, inducible CRISPRi library, based on spacer design rules optimized for S. cerevisiae. We have validated this library for genome-wide interrogation of gene function across a variety of applications, including accurate discovery of haploinsuffi- cient genes and identification of enzymatic and regulatory genes involved in adenine and arginine biosynthesis. The comprehensive nature of the library also revealed refined spacer design parameters for transcriptional repression, including location, nucleosome occupancy and nucleotide features. CRISPRi screens using this library can identify genes and pathways with high precision and a low false discovery rate across a variety of experimental conditions, enabling rapid and reliable assessment of genetic function and interactions in S. cerevisiae. 1 Department of Biological Sciences, Columbia University, New York City, NY, USA. 2 Department of Systems Biology, Columbia University, New York City, NY, USA. 3 Department of Biochemistry and Molecular
    [Show full text]
  • Developing the CRISPR Interference System to Understand Bacterial Gene Function
    Developing the CRISPR Interference System to Understand Bacterial Gene Function Dept. of Veterinary Microbiology and Preventative Medicine Megan Weems, April Nelson, Victoria Thompson, Dr. Gregory Phillips THE PROBLEM • With an increasing amount of DNA sequences available, there is a demand for new tools for functional genomics to reveal the function of genes identified by genome sequencing projects THE SOLUTION • Development of a genetic system to repress expression of any targeted gene by use of CRISPRi technology • Useful to study gene function in multiple bacterial species • Can target multiple genes for simultaneous inactivation Devaki B, M Davison, R Barrangou. CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. 2011. Annu. Rev. Gen. Vol. 45:273-297. Tao X, L Yongchao, JD Van Nostrand, Z He, J Zhou. Cas9-Based Tools for Targeted Genome Editing and Transcriptional Control. 2014. Appl. Environ. Microbiol. 80(5):1544. INTRODUCTION • Bacterial CRISPR (clustered regularly interspaced short palindromic repeats) System - a newly understood bacterial defense mechanism against horizontal transfer of bacteriophage and plasmid DNA • Cas9 protein - degrades foreign DNA when bound to guide sequences Sontheimer EJ, LA Marraffini. Microbiology: Slicer for DNA. 2010. Nature. 468:45-46. CRISPR INTERFERENCE (CRISPRI) • Repressor proteins are effective to shut off gene expression (e.g., LacI, cI, Cro, GalR) • Cas9 modified by inactivation of nuclease activity (Cas9*) • Cas9* can be targeted to specific genes by co- expression of RNA guide sequences • Cas9* functions as a repressor of transcription of targeted genes Qi L, M Larson, L Gilbert, J Doudna, J Weissman, A Arkin, W Lim.
    [Show full text]
  • CRISPR Interference (Crispri) for Sequence-Specific Control of Gene
    PROTOCOL CRISPR interference (CRISPRi) for sequence-specific control of gene expression Matthew H Larson1–3, Luke A Gilbert1–3, Xiaowo Wang4, Wendell A Lim1–3,5, Jonathan S Weissman1–3 & Lei S Qi1,3,5 1Department of Cellular and Molecular Pharmacology, University of California, San Francisco (UCSF), San Francisco, California, USA. 2Howard Hughes Medical Institute, UCSF, San Francisco, California, USA. 3California Institute for Quantitative Biomedical Research, San Francisco, California, USA. 4Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology Department of Automation, Tsinghua University, Beijing, China. 5UCSF Center for Systems and Synthetic Biology, UCSF, San Francisco, California, USA. Correspondence should be addressed to L.S.Q. ([email protected]). Published online 17 October 2013; doi:10.1038/nprot.2013.132 Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest.
    [Show full text]
  • CRISPR Interference Efficiently Silences Latent and Lytic Viral Genes in Kaposi’S Sarcoma-Associated Herpesvirus-Infected Cells
    viruses Article CRISPR Interference Efficiently Silences Latent and Lytic Viral Genes in Kaposi’s Sarcoma-Associated Herpesvirus-Infected Cells Kevin Brackett 1, Ameera Mungale 1, Mary Lopez-Isidro 1, Duncan A. Proctor 1, Guillermo Najarro 1 and Carolina Arias 1,2,3,* 1 Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA; [email protected] (K.B.); [email protected] (A.M.); [email protected] (M.L.-I.); [email protected] (D.A.P.); [email protected] (G.N.) 2 Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA 3 Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA * Correspondence: [email protected] Abstract: Uncovering viral gene functions requires the modulation of gene expression through overexpression or loss-of-function. CRISPR interference (CRISPRi), a modification of the CRISPR- Cas9 gene editing technology, allows specific and efficient transcriptional silencing without genetic ablation. CRISPRi has been used to silence eukaryotic and prokaryotic genes at the single-gene and genome-wide levels. Here, we report the use of CRISPRi to silence latent and lytic viral genes, with an efficiency of ~80–90%, in epithelial and B-cells carrying multiple copies of the Kaposi’s sarcoma-associated herpesvirus (KSHV) genome. Our results validate CRISPRi for the analysis of KSHV viral elements, providing a functional genomics tool for studying virus–host interactions. Citation: Brackett, K.; Mungale, A.; Keywords: KSHV; CRISPR-interference; dCas9-KRAB; Kaposi’s sarcoma-associated herpesvirus; Lopez-Isidro, M.; Proctor, D.A.; gene expression; gene silencing Najarro, G.; Arias, C.
    [Show full text]
  • CRISPR/Dcas9-Based Systems: Mechanisms and Applications in Plant Sciences
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 February 2021 doi:10.20944/preprints202102.0033.v1 CRISPR/dCas9-based systems: Mechanisms and applications in plant sciences Chou Khai Soong Karlsona, Siti Nurfadhlina Mohd Noora, Nadja Nolteb, and Boon Chin Tana,* a Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia b Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands *Corresponding Author: Email address: [email protected]; Tel: +603-7967 7982 Abstract RNA-guided genomic transcriptional regulation tools, namely Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for the field of functional genomics. Deriving from the CRISPR/Cas9 system, both systems comprise a catalytically dead Cas9 (dCas9) and a single guide RNA (sgRNA). This type of dCas9 is incapable of cleaving DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, PAM sequence requirement, efficient delivery methods, and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement. Keywords: CRISPR interference; CRISPR/dCas9 system; crop improvement; gene silencing; RNAi; transcriptional regulation Introduction Recent advancements in omics-based technologies and bioinformatics methodologies have facilitated the ever-growing field of functional genomics and system biology (Guigo & De Hoon, 2018; Yadav & Tripathi, 2018).
    [Show full text]