RESEARCH ARTICLE Relative Entropy and Optimization-Driven Coarse-Graining Methods in VOTCA S. Y. Mashayak1, Mara N. Jochum2, Konstantin Koschke2, N. R. Aluru1, Victor Rühle3, Christoph Junghans4* 1 Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America, 2 Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany, 3 Department of Chemistry, University of Cambridge, Cambridge, United Kingdom, 4 Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of a11111 America *
[email protected] Abstract OPEN ACCESS We discuss recent advances of the VOTCA package for systematic coarse-graining. Two methods have been implemented, namely the downhill simplex optimization and the relative Citation: Mashayak SY, Jochum MN, Koschke K, Aluru NR, Rühle V, Junghans C (2015) Relative entropy minimization. We illustrate the new methods by coarse-graining SPC/E bulk water Entropy and Optimization-Driven Coarse-Graining and more complex water-methanol mixture systems. The CG potentials obtained from both Methods in VOTCA. PLoS ONE 10(7): e0131754. methods are then evaluated by comparing the pair distributions from the coarse-grained to doi:10.1371/journal.pone.0131754 the reference atomistic simulations. In addition to the newly implemented methods, we Editor: Xuhui Huang, Hong Kong University of have also added a parallel analysis framework to improve the computational efficiency of Science and Technology, HONG KONG the coarse-graining process. Received: November 12, 2014 Accepted: June 5, 2015 Published: July 20, 2015 Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, 1 Introduction transmitted, modified, built upon, or otherwise used In recent years, coarse-grained simulations have become an important tool for investigating by anyone for any lawful purpose.