Zooplankton-Mediated Carbon Flux in the Southern Ocean: Influence of Community Structure, Metabolism and Behaviour
Total Page:16
File Type:pdf, Size:1020Kb
Zooplankton‐mediated carbon flux in the Southern Ocean: influence of community structure, metabolism and behaviour Cecilia Liszka A thesis submitted to the School of Environmental Sciences of the University of East Anglia in partial fulfilment of the requirements for the degree of Doctor of Philosophy July 2018 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived therefrom must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. Abstract The biological carbon pump (BCP) exerts an important control on climate, exporting organic carbon from the ocean surface to interior. Zooplankton are a key component of the BCP and may enhance it through diel vertical migration (DVM) and faecal pellet production at depth. However, variability in these processes mean the zooplankton term is insufficiently constrained in global climate models. I investigated the role of zooplankton in the BCP at four locations in the Scotia Sea, Southern Ocean (SO), combining observations, in situ experiments and modelling. I found that carbon flux is highly dependent on zooplankton structure, behaviour and community dynamics, with strong latitudinal variations. Zooplankton demonstrated a high degree of behavioural plasticity. Normal, reverse and non‐migration modes were common within species and at the community level, with implications for seasonal export flux. Carbon export (faecal pellet and respiration flux) from migrants was generally higher north of the Southern Antarctic Circumpolar Current Front (SACCF), corresponding to greater species biomass and diversity, but could be highly variable. Faecal pellet attenuation depth, defined as the depth from which faecal pellet flux decreased from its maximal value, also corresponded to zooplankton biomass, being deeper in the north, and shallowest nearer the ice. DVM may explain enhanced night‐time fluxes which comprised a shallower input of dense, fast‐ sinking faecal pellets with high sinking velocities. Community‐scale reverse migrations during summer reduced flux from migrants suggesting that at high latitudes, mode of migration may be important in determining zooplankton community carbon flux. Variability in water column temperature during DVM also affected carbon flux from respiration from Euphausia triacantha, a widespread SO euphausiid and interzonal migrant. The first comprehensive measurements of this kind showed short‐term respiration rates to vary with a Q10 of ~4.7 between 0.2 and 4.7 °C. In model simulations, respiration flux accounted for two‐thirds of total annual carbon flux from E. triacantha, dominating during summer when upper water column temperature was most variable. Modelled carbon flux was also highly sensitive to feeding dynamics and migratory behaviour. Flux was enhanced during carnivorous feeding and asynchronous migration. However, when considering feeding dynamics and seasonal mixed layer depths, lower export was predicted from foray compared to ‘classical’ DVM. In summary, regions of high mesozooplankton biomass can generate large fluxes of carbon which penetrate the mid‐mesopelagic but are also more difficult to predict due to variability in zooplankton behaviour and ecology. This will be improved with a deeper understanding of species‐specific feeding and migration behaviours. 3 Contents List of Tables ............................................................................................................................ 9 List of Figures ......................................................................................................................... 12 Acknowledgements ................................................................................................................ 16 Chapter 1: Introduction ......................................................................................................... 17 1.1 The oceans and biogeochemical cycling ................................................................ 17 1.1.1 The Biological Carbon Pump .......................................................................... 19 1.1.2 The Southern Ocean and Scotia Sea .............................................................. 21 1.1.3 Zooplankton of the Southern Ocean.............................................................. 25 1.2 Zooplankton and the biological carbon pump ....................................................... 26 1.2.1 Zooplankton diel vertical migration ............................................................... 28 1.2.2 DVM and active flux ....................................................................................... 29 1.3 Motivation of the thesis ......................................................................................... 32 1.3.1 Specific aims of each chapter ......................................................................... 33 Chapter 2: The influence of the Scotia Sea zooplankton community on diel vertical migration and carbon flux ...................................................................................................... 36 2.1 Introduction ........................................................................................................... 36 2.1.1 The Scotia Sea ................................................................................................ 36 2.1.2 Zooplankton of the Scotia Sea ....................................................................... 37 2.1.3 Zooplankton and carbon flux ......................................................................... 37 2.1.4 Purpose of the current study ......................................................................... 38 2.2 Methodology .......................................................................................................... 40 2.2.1 Physical environment and hydrography ........................................................ 40 2.2.2 Sampling strategy ........................................................................................... 40 2.2.3 Sample analysis .............................................................................................. 43 2.2.4 Data preparation and pre‐treatment ............................................................. 43 2.2.5 Data analysis and statistics ............................................................................ 44 2.2.6 Calculating biomass and carbon flux.............................................................. 46 2.3 Results .................................................................................................................... 52 2.3.1 Physical environment and hydrography ........................................................ 52 2.3.2 Analysis of stations over depth and latitude ................................................. 54 2.3.3 Taxonomic contribution to station groupings ............................................... 59 2.3.4 Diurnal variability in species vertical migrations and distributions ............... 66 2.3.5 Carbon flux from migratory zooplankton ...................................................... 74 2.4 Discussion ............................................................................................................... 76 5 2.4.1 Zooplankton community structure across the Scotia Sea ............................. 76 2.4.2 Evidence for diel vertical migration at individual and community scale ....... 78 2.4.3 Influence of vertical migration on carbon flux ............................................... 81 2.4.4 Summary ........................................................................................................ 85 Chapter 3: Zooplankton abundance and behaviour increases faecal pellet flux and remineralisation depth in the Southern Ocean ..................................................................... 86 3.1. Introduction ........................................................................................................... 86 3.1.1 Zooplankton faecal pellets and the biological pump ..................................... 86 3.1.2 Uncertainty in faecal pellet‐mediated export ................................................ 86 3.1.3 Purpose of the study ...................................................................................... 88 3.2 Material and methods ........................................................................................... 89 3.2.1 Study area and sampling ................................................................................ 89 3.2.2 Sample analysis .............................................................................................. 92 3.2.3 Data analysis and statistics ............................................................................ 95 3.3 Results .................................................................................................................... 97 3.3.1 Environmental and hydrographical context .................................................. 97 3.3.2 Mesozooplankton analysis ............................................................................. 98 3.3.3 Faecal pellet and sample analysis ................................................................ 101 3.4 Discussion ............................................................................................................. 110 3.4.1 Is the mesozooplankton community a good predictor of faecal pellet export? ………………..………………………………………………………………………………………………………………