Low Rank Approximation Lecture 1 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL
[email protected] 1 Organizational aspects I Lectures: Tuesday 8-10, MA A110. First: September 25, Last: December 18. I Exercises: Tuesday 8-10, MA A110. First: September 25, Last: December 18. I Exam: Miniproject + oral exam. I Webpage: https://anchp.epfl.ch/lowrank. I
[email protected],
[email protected] 2 From http://www.niemanlab.org ... his [Aleksandr Kogan’s] message went on to confirm that his approach was indeed similar to SVD or other matrix factorization meth- ods, like in the Netflix Prize competition, and the Kosinki-Stillwell- Graepel Facebook model. Dimensionality reduction of Facebook data was the core of his model. 3 Rank and basic properties For field F, let A 2 F m×n. Then rank(A) := dim(range(A)): For simplicity, F = R throughout the lecture and often m ≥ n. Lemma Let A 2 Rm×n. Then 1. rank(AT ) = rank(A); 2. rank(PAQ) = rank(A) for invertible matrices P 2 Rm×m, Q 2 Rn×n; 3. rank(AB) ≤ minfrank(A); rank(B)g for any matrix B 2 Rn×p. A11 A12 m ×n 4. rank = rank(A11) + rank(A22) for A11 2 R 1 1 , 0 A22 m ×n m ×n A12 2 R 1 2 ,A22 2 R 2 2 . Proof: See Linear Algebra 1 / Exercises. 4 Rank and matrix factorizations m Let B = fb1;:::; br g ⊂ R with r = rank(A) be basis of range(A). Then each of the columns of A = a1; a2;:::; an can be expressed as linear combination of B: 2 3 ci1 ;:::; 6 .