Canonical Quantum Gravity and the Problem of Time

Total Page:16

File Type:pdf, Size:1020Kb

Canonical Quantum Gravity and the Problem of Time Imperial/TP/91-92/25 Canonical Quantum Gravity and the Problem of Time 1 2 C.J. Isham Blackett Laboratory Imperial College South Kensington London SW7 2BZ United Kingdom August 1992 Abstract The aim of this paper is to provide a general introduction to the problem of time in quantum gravity. This problem originates in the fundamental conflict between arXiv:gr-qc/9210011v1 21 Oct 1992 the way the concept of ‘time’ is used in quantum theory, and the role it plays in a diffeomorphism-invariant theory like general relativity. Schemes for resolving this problem can be sub-divided into three main categories: (I) approaches in which time is identified before quantising; (II) approaches in which time is identified after quantising; and (III) approaches in which time plays no fundamental role at all. Ten different specific schemes are discussed in this paper which also contain an introduction to the relevant parts of the canonical decomposition of general relativity. 1Lectures presented at the NATO Advanced Study Institute “Recent Problems in Mathematical Physics”, Salamanca, June 15–27, 1992. 2Research supported in part by SERC grant GR/G60918. Contents 1 INTRODUCTION 4 1.1 Preamble ................................... 4 1.2 PreliminaryRemarks ............................. 4 1.3 Current Research Programmes in Quantum Gravity . ..... 6 1.4 OutlineofthePaper ............................. 8 1.5 Conventions.................................. 9 2 QUANTUMGRAVITYANDTHEPROBLEMOFTIME 9 2.1 Time in Conventional Quantum Theory . .. 10 2.2 Time in a Diff( )-invariantTheory . 12 M 2.3 ApproachestotheProblemofTime. 16 2.4 Technical Problems With Time . 19 3 CANONICALGENERALRELATIVITY 20 3.1 IntroductoryRemarks ............................ 21 3.2 Quantum Field Theory in a Curved Background . ... 22 3.2.1 TheCanonicalFormalism . 22 3.2.2 QuantisationoftheSystem . 23 3.3 The Arnowitt-Deser-Misner Formalism . .... 25 3.3.1 IntroductionoftheFoliation . 25 3.3.2 The Lapse Function and Shift Vector . 27 3.3.3 The Canonical Form of General Relativity . .. 28 3.3.4 TheConstraintAlgebra . 32 3.3.5 TheRoleoftheConstraints . 34 3.3.6 Eliminating the Non-Dynamical Variables . ... 36 3.4 InternalTime ................................. 37 3.4.1 TheMainIdeas ............................ 37 3.4.2 ReductiontoTrueCanonicalForm . 40 3.4.3 TheMulti-timeFormalism . 43 1 4 IDENTIFY TIME BEFORE QUANTISATION 44 4.1 Canonical Quantum Gravity: Constrain Before Quantising ........ 44 4.1.1 BasicIdeas .............................. 44 4.1.2 ProblemsWiththeFormalism . 45 4.2 The Internal Schr¨odinger Interpretation . ........ 46 4.2.1 TheMainIdeas ............................ 46 4.2.2 The Main Advantages of the Scheme . 48 4.2.3 AMinisuperspaceModel . 49 4.2.4 Mean Extrinsic Curvature Time . 51 4.2.5 TheMajorProblems ......................... 52 4.3 Matter Clocks and Reference Fluids . ... 59 4.3.1 TheBasicIdeas............................ 59 4.3.2 TheGaussianReferenceFluid . 60 4.3.3 AdvantagesandProblems . 61 4.4 UnimodularGravity ............................. 62 5 IDENTIFYTIMEAFTERQUANTISATION 63 5.1 Canonical Quantum Gravity: Quantise Before Constraining........ 63 5.1.1 The Canonical Commutation Relations for Gravity . .... 64 5.1.2 TheImpositionoftheConstraints. 65 5.1.3 ProblemswiththeDiracApproach . 66 5.1.4 Representations on Functionals Ψ[g] ................ 67 5.1.5 The Wheeler-DeWitt Equation . 68 5.1.6 A Minisuperspace Example . 69 5.2 The Klein-Gordon Interpretation for Quantum Gravity . ........ 71 5.2.1 The Analogue of a Point Particle Moving in a Curved Spacetime . 71 5.2.2 Applying the Idea to Quantum Gravity . 73 5.3 ThirdQuantisation .............................. 75 5.4 The Semiclassical Approximation to Quantum Gravity . ....... 77 5.4.1 TheEarlyIdeas............................ 77 5.4.2 The WKB Approximation to Pure Quantum Gravity . 78 5.4.3 Semiclassical Quantum Gravity and the Problem of Time ..... 80 2 5.4.4 TheMajorProblems ......................... 82 5.5 DecoherenceofWKBSolutions . 84 5.5.1 The Main Idea in Conventional Quantum Theory . 84 5.5.2 Applications to Quantum Cosmology . 87 6 TIMELESS INTERPRETATIONS OF QUANTUM GRAVITY 88 6.1 The Na¨ıve Schr¨odinger Interpretation . ....... 88 6.2 The Conditional Probability Interpretation . ........ 92 6.2.1 TheMainIdeas ............................ 92 6.2.2 Conditional Probabilities in Conventional Quantum Theory . 93 6.2.3 The Timeless Extension . 94 6.3 The Consistent Histories Interpretation . ....... 95 6.3.1 Preamble ............................... 96 6.3.2 Consistent Histories in Conventional Quantum Theory ...... 97 6.3.3 The Application to Quantum Gravity . 100 6.3.4 ProblemsWiththeFormalism . 102 6.4 The Frozen Formalism: Evolving Constants of Motion . ....... 104 7 CONCLUSIONS 107 3 1 INTRODUCTION 1.1 Preamble These notes are based on a course of lectures given at the NATO Advanced Summer Institute “Recent Problems in Mathematical Physics”, Salamanca, June 15–27, 1992. The notes reflect part of an extensive investigation with Karel Kuchaˇrinto the problem of time in quantum gravity. An excellent recent review is Kuchaˇr(1992b), to which the present article is complementary to some extent. In particular, my presentation is slanted towards the more conceptual aspects of the problem and, as this a set of lecture notes (rather than a review paper proper), I have also included a fairly substantial technical introduction to the canonical theory of general relativity. However, there is inevitably a strong overlap with many portions of Kuchaˇr’s paper, and I am grateful to him for permission to include this material plus a number of ideas that have emerged in our joint discussions. Therefore, the credit for any good features in the present account should be shared between us; the credit for the mistakes I claim for myself alone. 1.2 Preliminary Remarks The problem of ‘time’ is one of the deepest issues that must be addressed in the search for a coherent theory of quantum gravity. The major conceptual problems with which it is closely connected include: the status of the concept of probability and the extent to which it is conserved; • the status of the associated concepts of causality and unitarity; • the time-honoured debate about whether quantum gravity should be approached • via a canonical,or a covariant, quantisation scheme; the extent to which spacetime is a meaningful concept; • the extent to which classical geometrical concepts can, or should, be maintained • in the quantum theory; the way in which our classical world emerged from some primordial quantum event • at the big-bang; the whole question of the interpretation of quantum theory and, in particular, the • domain of applicability of the conventional Copenhagen view. The prime source of the problem of time in quantum gravity is the invariance of classical general relativity under the group Diff( ) of diffeomorphisms of the spacetime M 4 manifold . This stands against the simple Newtonian picture of a fixed time param- eter, andM tends to produce quantisation schemes that apparently lack any fundamental notion of time at all. From this perspective, the heart of the problem is contained in the following questions: 1. How should the notion of time be re-introduced into the quantum theory of gravity? 2. In particular, should attempts to identify time be made at the classical level, i.e., before quantisation, or should the theory be quantised first? 3. Can ‘time’ still be regarded as a fundamental concept in a quantum theory of gravity, or is its status purely phenomenological? If the concept of time is not fundamental, should it be replaced by something that is: for example, the idea of a history of a system, or process, or an ordering structure that is more general than that afforded by the conventional idea of time? 4. If ‘time’ is only an approximate concept, how reliable is the rest of the quantum- mechanical formalism in those regimes where the normal notion of time is not applicable? In particular, how closely tied to the concept of time is the idea of probability? This is especially relevant in those approaches to quantum gravity in which the notion of time emerges only after the theory has been quantised. In addition to these questions—which apply to quantum gravity in general—there is also the partly independent issue of the applicability of the concept of time (and, indeed, of quantum theory in general) in the context of quantum cosmology. Of particular relevance here are questions of (i) the status of the Copenhagen interpretation of quantum theory (with its emphasis on the role of measurements); and (ii) the way in which our present classical universe, including perhaps the notion of time, emerged from the quantum origination event. A key ingredient in all these questions is the realisation that the notion of time used in conventional quantum theory is grounded firmly in Newtonian physics. Newtonian time is a fixed structure, external to the system: a concept that is manifestly incompatible with diffeomorphism-invariance and also with the idea of constructing a quantum theory of a truly closed system (such as the universe itself). Most approaches to the problem of time in quantum gravity 3 seek to address this central issue by identifying an internal time which is defined in terms of the system itself, using either the gravitational field or the matter variables that describe the material content of the universe. The various schemes differ in the way such an identification is made and the point in the procedure at which it is invoked. Some of
Recommended publications
  • Semiclassical Gravity and Quantum De Sitter
    Semiclassical gravity and quantum de Sitter Neil Turok Perimeter Institute Work with J. Feldbrugge, J-L. Lehners, A. Di Tucci Credit: Pablo Carlos Budassi astonishing simplicity: just 5 numbers Measurement Error Expansion rate: 67.8±0.9 km s−1 Mpc−1 1% today (Temperature) 2.728 ± 0.004 K .1% (Age) 13.799 ±0.038 bn yrs .3% Baryon-entropy ratio 6±.1x10-10 1% energy Dark matter-baryon ratio 5.4± 0.1 2% Dark energy density 0.69±0.006 x critical 2% Scalar amplitude 4.6±0.006 x 10-5 1% geometry Scalar spectral index -.033±0.004 12% ns (scale invariant = 0) A dns 3 4 gw consistent +m 's; but Ωk , 1+ wDE , d ln k , δ , δ ..,r = A with zero ν s Nature has found a way to create a huge hierarchy of scales, apparently more economically than in any current theory A fascinating situation, demanding new ideas One of the most minimal is to revisit quantum cosmology The simplest of all cosmological models is de Sitter; interesting both for today’s dark energy and for inflation quantum cosmology reconsidered w/ S. Gielen 1510.00699, Phys. Rev. Le+. 117 (2016) 021301, 1612.0279, Phys. Rev. D 95 (2017) 103510. w/ J. Feldbrugge J-L. Lehners, 1703.02076, Phys. Rev. D 95 (2017) 103508, 1705.00192, Phys. Rev. Le+, 119 (2017) 171301, 1708.05104, Phys. Rev. D, in press (2017). w/A. Di Tucci, J. Feldbrugge and J-L. Lehners , in PreParaon (2017) Wheeler, Feynman, Quantum geometrodynamics De Wi, Teitelboim … sum over final 4-geometries 3-geometry (4) Σ1 gµν initial 3-geometry Σ0 fundamental object: Σ Σ ≡ 1 0 Feynman propagator 1 0 Basic object: phase space Lorentzian path integral 2 2 i 2 i (3) i j ADM : ds ≡ (−N + Ni N )dt + 2Nidtdx + hij dx dx Σ1 i (3) (3) i S 1 0 = DN DN Dh Dπ e ! ∫ ∫ ∫ ij ∫ ij Σ0 1 S = dt d 3x(π (3)h!(3) − N H i − NH) ∫0 ∫ ij ij i Basic references: C.
    [Show full text]
  • Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects
    Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Botio Betev, Switzerland Ian Jack, UK Neil Spooner, UK Duncan L. Carlsmith, USA Filipe R. Joaquim, Portugal Luca Stanco, Italy Kingman Cheung, Taiwan Piero Nicolini, Germany EliasC.Vagenas,Kuwait Shi-Hai Dong, Mexico Seog H. Oh, USA Nikos Varelas, USA Edmond C. Dukes, USA Sandip Pakvasa, USA Kadayam S. Viswanathan, Canada Amir H. Fatollahi, Iran Anastasios Petkou, Greece Yau W. Wah, USA Frank Filthaut, The Netherlands Alexey A. Petrov, USA Moran Wang, China Joseph Formaggio, USA Frederik Scholtz, South Africa Gongnan Xie, China Chao-Qiang Geng, Taiwan George Siopsis, USA Hong-Jian He, China Terry Sloan, UK Contents Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects,EmilT.Akhmedov,
    [Show full text]
  • Notes on Semiclassical Gravity
    ANNALS OF PHYSICS 196, 296-M (1989) Notes on Semiclassical Gravity T. P. SINGH AND T. PADMANABHAN Theoretical Astrophvsics Group, Tata Institute of Fundamental Research, Horn; Bhabha Road, Bombay 400005, India Received March 31, 1989; revised July 6, 1989 In this paper we investigate the different possible ways of defining the semiclassical limit of quantum general relativity. We discuss the conditions under which the expectation value of the energy-momentum tensor can act as the source for a semiclassical, c-number, gravitational field. The basic issues can be understood from the study of the semiclassical limit of a toy model, consisting of two interacting particles, which mimics the essential properties of quan- tum general relativity. We define and study the WKB semiclassical approximation and the gaussian semiclassical approximation for this model. We develop rules for Iinding the back- reaction of the quantum mode 4 on the classical mode Q. We argue that the back-reaction can be found using the phase of the wave-function which describes the dynamics of 4. We find that this back-reaction is obtainable from the expectation value of the hamiltonian if the dis- persion in this phase can be neglected. These results on the back-reaction are generalised to the semiclassical limit of the Wheeler-Dewitt equation. We conclude that the back-reaction in semiclassical gravity is ( Tlk) only when the dispersion in the phase of the matter wavefunc- tional can be neglected. This conclusion is highlighted with a minisuperspace example of a massless scalar field in a Robertson-Walker universe. We use the semiclassical theory to show that the minisuperspace approximation in quantum cosmology is valid only if the production of gravitons is negligible.
    [Show full text]
  • Unitarity Condition on Quantum Fields in Semiclassical Gravity Abstract
    KNUTH-26,March1995 Unitarity Condition on Quantum Fields in Semiclassical Gravity Sang Pyo Kim ∗ Department of Physics Kunsan National University Kunsan 573-701, Korea Abstract The condition for the unitarity of a quantum field is investigated in semiclas- sical gravity from the Wheeler-DeWitt equation. It is found that the quantum field preserves unitarity asymptotically in the Lorentzian universe, but does not preserve unitarity completely in the Euclidean universe. In particular we obtain a very simple matter field equation in the basis of the generalized invariant of the matter field Hamiltonian whose asymptotic solution is found explicitly. Published in Physics Letters A 205, 359 (1995) Unitarity of quantum field theory in curved space-time has been a problem long debated but sill unsolved. In particular the issue has become an impassioned altercation with the discovery of the Hawking radiation [1] from black hole in relation to the information loss problem. Recently there has been a series of active and intensive investigations of quantum ∗E-mail : [email protected] 1 effects of matter field through dilaton gravity and resumption of unitarity and information loss problem (for a good review and references see [2]). In this letter we approach the unitarity problem and investigate the condition for the unitarity of a quantum field from the point of view of semiclassical gravity based on the Wheeler-DeWitt equation [3]. By developing various methods [4–18] for semiclassical gravity and elaborating further the new asymptotic expansion method [19] for the Wheeler-DeWitt equation, we derive the quantum field theory for a matter field from the Wheeler-DeWittt equation for the gravity coupled to the matter field, which is equivalent to a gravitational field equation and a matrix equation for the matter field through a definition of cosmological time.
    [Show full text]
  • Inflation Without Quantum Gravity
    Inflation without quantum gravity Tommi Markkanen, Syksy R¨as¨anen and Pyry Wahlman University of Helsinki, Department of Physics and Helsinki Institute of Physics P.O. Box 64, FIN-00014 University of Helsinki, Finland E-mail: tommi dot markkanen at helsinki dot fi, syksy dot rasanen at iki dot fi, pyry dot wahlman at helsinki dot fi Abstract. It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantised metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantised, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface, and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where non-minimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantisation of gravity. arXiv:1407.4691v2 [astro-ph.CO] 4 May 2015 Contents 1 Introduction 1 2 Semiclassical inflation 3 2.1 Action and equations of motion 3 2.2 From homogeneity and isotropy to perturbations 6 3 Matching across the collapse 7 3.1 Hypersurface of collapse 7 3.2 Inflation models 10 4 Conclusions 13 1 Introduction Inflation and the quantisation of gravity.
    [Show full text]
  • Open Dissertation-Final.Pdf
    The Pennsylvania State University The Graduate School The Eberly College of Science CORRELATIONS IN QUANTUM GRAVITY AND COSMOLOGY A Dissertation in Physics by Bekir Baytas © 2018 Bekir Baytas Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The dissertation of Bekir Baytas was reviewed and approved∗ by the following: Sarah Shandera Assistant Professor of Physics Dissertation Advisor, Chair of Committee Eugenio Bianchi Assistant Professor of Physics Martin Bojowald Professor of Physics Donghui Jeong Assistant Professor of Astronomy and Astrophysics Nitin Samarth Professor of Physics Head of the Department of Physics ∗Signatures are on file in the Graduate School. ii Abstract We study what kind of implications and inferences one can deduce by studying correlations which are realized in various physical systems. In particular, this thesis focuses on specific correlations in systems that are considered in quantum gravity (loop quantum gravity) and cosmology. In loop quantum gravity, a spin-network basis state, nodes of the graph describe un-entangled quantum regions of space, quantum polyhedra. We introduce Bell- network states and study correlations of quantum polyhedra in a dipole, a pentagram and a generic graph. We find that vector geometries, structures with neighboring polyhedra having adjacent faces glued back-to-back, arise from Bell-network states. The results present show clearly the role that entanglement plays in the gluing of neighboring quantum regions of space. We introduce a discrete quantum spin system in which canonical effective methods for background independent theories of quantum gravity can be tested with promising results. In particular, features of interacting dynamics are analyzed with an emphasis on homogeneous configurations and the dynamical building- up and stability of long-range correlations.
    [Show full text]
  • Quantum Gravity from the QFT Perspective
    Quantum Gravity from the QFT perspective Ilya L. Shapiro Universidade Federal de Juiz de Fora, MG, Brazil Partial support: CNPq, FAPEMIG ICTP-SAIFR/IFT-UNESP – 1-5 April, 2019 Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 Lecture 5. Advances topics in QG Induced gravity concept. • Effective QG: general idea. • Effective QG as effective QFT. • Where we are with QG?. • Bibliography S.L. Adler, Rev. Mod. Phys. 54 (1982) 729. S. Weinberg, Effective Field Theory, Past and Future. arXive:0908.1964[hep-th]; J.F. Donoghue, The effective field theory treatment of quantum gravity. arXive:1209.3511[gr-qc]; I.Sh., Polemic notes on IR perturbative quantum gravity. arXiv:0812.3521 [hep-th]. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 I. Induced gravity. The idea of induced gravity is simple, while its realization may be quite non-trivial, depending on the theory. In any case, the induced gravity concept is something absolutely necessary if we consider an interaction of gravity with matter and quantum theory concepts. I. Induced gravity from cut-off Original simplest version. Ya.B. Zeldovich, Sov. Phys. Dokl. 6 (1967) 883. A.D. Sakharov, Sov. Phys. Dokl. 12 (1968) 1040. Strong version of induced gravity is like that: Suppose that the metric has no pre-determined equations of motion. These equations result from the interaction to matter. Main advantage: Since gravity is not fundamental, but induced interaction, there is no need to quantize metric. Ilya Shapiro, Quantum Gravity from the QFT perspective April - 2019 And we already know that the semiclassical approach has no problems with renormalizability! Suppose we have a theory of quantum matter fields Φ = (ϕ, ψ, Aµ) interacting to the metric gµν .
    [Show full text]
  • Emergent Gravity: from Condensed Matter Analogues to Phenomenology
    Emergent gravity: From Condensed matter analogues to Phenomenology. Emergent properties of space-time. CERN. Stefano Liberati SISSA - INFN Trieste, Italy GR, a beautiful but weird theory… Some tantalising features of General Relativity Singularities Critical phenomena in gravitational collapse Horizon thermodynamics Spacetime thermodynamics: Einstein equations as equations of state. The “dark ingredients” of our universe? Faster than light and Time travel solutions AdS/CFT duality, holographic behaviour Gravity/fluid duality Gravity as an emergent phenomenon? Emergent gravity idea: quantizing the metric or the connections does not help because perhaps these are not fundamental objects but collective variables of more fundamental structures. GR ⇒ Hydrodynamics Metric as a collective variable All the sub-Planckian physics is low energy physics Spacetime as a condensate of some more fundamental objects Spacetime symmetries as emergent symmetries Singularities as phase transitions (big bang as geometrogenesis) Cosmological constant as deviation from the real ground state Many models are nowadays resorting to emergent gravity scenarios Causal sets Quantum graphity models Group field theories condensates scenarios AdS/CFT scenarios where the CFT is considered primary Gravity as an entropic force ideas Condensed matter analogues of gravity Gravity as an emergent phenomenon? Emergent gravity idea: quantizing the metric or the connections does not help because perhaps these are not fundamental objects but collective variables of more fundamental
    [Show full text]
  • A Direction of Time in Time-Symmetric Electrodynamics
    COLUMBIA UNIVERSITY MASTER’S THESIS A Direction of Time in Time-Symmetric Electrodynamics Author: Supervisor: Kathleen TATEM Dr. Erick WEINBERG A thesis submitted in fulfillment of the requirements for the degree of Master of Arts in the Philosophical Foundations of Physics Graduate School of Arts and Sciences May 17, 2017 ii In grateful memory of my mentor, Dr. John M. J. Madey. iii Columbia University Abstract Departments of Physics and Philosophy Graduate School of Arts and Sciences Master of Arts A Direction of Time in Time-Symmetric Electrodynamics by Kathleen TATEM This thesis introduces a recent analytical verification which is of significance to the philosophical debate on the direction of time in the case of electromagnetic radiation. I give an overview of a the problem of the direction of time in thermodynamics, as well as how it is solved with the Past Hypothesis, a hypothesis that the macrostate of the universe at the moment of the Big Bang was an extremely low-entropy state. I also describe the standard accepted textbook solution to the radiation problem, as well as an alternative time-symmetric theory presented by Feynman and Wheeler that had historically been considered less favorable to physicists. Analytical ver- ification supports that time-symmetric accounts of radiation such as Feynman and Wheeler’s theory are needed for radiation fields to comply with energy conservation and the fundamental equations of electromagnetism. I describe two other philo- sophical accounts of the direction of time in radiation theory, and then argue that proposed experiments based on this recent analytical result can help us rule out some of the alternative philosophical proposals on the origin of the direction of time in radiation theory.
    [Show full text]
  • Impulse Gravity Generator Based on Charged Y Ba2cu3o7−Y
    Impulse Gravity Generator Based on Charged YBa2Cu3O7 y Superconductor with Composite Crystal − Structure Evgeny Podkletnov1, Giovanni Modanese2 1 Moscow Chemical Scientific Research Centre 113452 Moscow - Russia E-mail: [email protected] 2 California Institute for Physics and Astrophysics 366 Cambridge Ave., Palo Alto, CA 94306 and University of Bolzano – Industrial Engineering Via Sernesi 1, 39100 Bolzano, Italy E-mail: [email protected] Abstract The detection of apparent anomalous forces in the vicinity of high-Tc supercon- ductors under non equilibrium conditions has stimulated an experimental research in which the operating parameters of the experiment have been pushed to values higher than those employed in previous attempts. The results confirm the existence of an unexpected physical interaction. An apparatus has been constructed and tested in which the superconductor is subjected to peak currents in excess of 104 A, surface potentials in excess of 1 MV , trapped magnetic field up to 1 T , and temperature down to 40 K. In order to produce the required currents a high voltage discharge technique has been employed. Discharges originating from a superconducting ceramic electrode are accompanied by the emission of radiation which propagates in a focused beam without noticeable attenuation through different materials and exerts a short repulsive force on small movable objects along the propagation axis. Within the measurement error (5 to 7 %) the impulse is proportional to the mass of the objects and independent on their composition. It therefore resembles a gravitational impulse. The observed phenomenon appears to be absolutely new and unprecedented in the literature. It cannot be understood in the framework of general relativity.
    [Show full text]
  • Time in Quantum Cosmology of FRW F(R) Theories
    galaxies Article Time in Quantum Cosmology of FRW f (R) Theories C. Ramírez 1,* ID and V. Vázquez-Báez 2 ID 1 Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico 2 Facultad de Ingeniería, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +52-222-229-5637 Received: 1 December 2017; Accepted: 9 January 2018; Published: 17 January 2018 Abstract: The time problem is a problem of canonical quantum gravity that has long been known about; it is related to the relativistic invariance and the consequent absence of an explicit time variable in the quantum equations. This fact complicates the interpretation of the wave function of the universe. Following proposals to assign the clock function to a scalar field, we look at the scalar degree of freedom contained in f (R) theories. For this purpose we consider a quadratic f (R) theory in an equivalent formulation with a scalar field, with a FRW metric, and consider its Wheeler-DeWitt equation. The wave function is obtained numerically and is consistent with the interpretation of the scalar field as time by means of a conditional probability, from which an effective time-dependent wave function follows. The evolution the scale factor is obtained by its mean value, and the quantum fluctuations are consistent with the Heisenberg relations and a classical universe today. Keywords: quantum cosmology; modified gravity; time problem 1. Introduction Since its formulation, general relativity has been a successful theory, verified in many ways and at any scale.
    [Show full text]
  • On the Concept of Time in Everyday Life and Between Physics and Mathematics
    Ergonomics International Journal ISSN: 2577-2953 MEDWIN PUBLISHERS Committed to Create Value for Researchers On the Concept of Time in Everyday Life and between Physics and Mathematics Paolo Di Sia* Conceptual Paper Department of Physics and Astronomy, University of Padova, Italy Volume 5 Issue 2 Received Date: March 03, 2021 *Corresponding author: Paolo Di Sia, Department of Physics & Astronomy, School of Science Published Date: March 16, 2021 and Medicine, University of Padova, Padova, Italy, Email: [email protected] DOI: 10.23880/eoij-16000268 Abstract In this paper I consider the concept of time in a general way as daily human time and then within physics with relation to mathematics. I consider the arrow of time and then focus the attention on quantum mechanics, with its particular peculiarities, examining important concepts like temporal asymmetry, complexity, decoherence, irreversibility, information theory, chaos theory. In conclusion I consider the notion of time connected to a new theory in progress, called “Primordial Dynamic Space” theory. Keywords: Time; Modern Physics; Irreversibility; Decoherence; Symmetry; Entanglement; Complexity; “Primordial Dynamic Space” Theory; Education Introduction the past that still lasts in the present and which exists in the The problem of time is one of the fundamental problems of human existence; even before being the subject of presentThe memoryrelation as between a transfigured the three past. dimensions of time philosophical investigation, it constitutes the man’s ever- involves another very important existential aspect: how present problem, since even in an unconscious way it to act so that a painful past no longer exists and so that a is intrinsically linked to our life.
    [Show full text]