Genetic Improvement of Data Gives Binary Logarithm from Sqrt
Genetic Improvement of Data gives Binary Logarithm from sqrt W. B. Langdon Justyna Petke Department of Computer Science, UCL Department of Computer Science, UCL 1.4 ABSTRACT x Evolved value Automated search in the form of the Covariance Matrix Adaptation 1.2 Theory Evolution Strategy (CMA-ES), plus manual code changes, trans- 1 forms 512 Newton-Raphson floating point start numbers from an open source GNU C library, glibc, table driven square root function 0.8 to create a new bespoke custom mathematical implementation of 0.6 double precision binary logarithm log2 for C in seconds. 0.4 CCS CONCEPTS CMA-ES output 0.2 • Software engineering → Search-based software engineer; 0 KEYWORDS -0.2 -0.4 genetic programming, GI, search based software engineering, SBSE, -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 software maintenance of empirical constants, data transplantation CMA-ES seeded from sqrt_t ACM Reference Format: W. B. Langdon and Justyna Petke. 2019. Genetic Improvement of Data Figure 1: modification from sqrt table values to give corre- gives Binary Logarithm from sqrt. In Genetic and Evolutionary Computation sponding log2 table value (vertical axis). 512 CMA-ES runs. Conference Companion (GECCO ’19 Companion), July 13–17, 2019, Prague, Czech Republic. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/ values embedded inside the source code, with a view to create new 3319619.3321954 functionality rather than to improve existing functionality. In [4] we claimed that the framework could support other double 1 NEW FUNCTIONALITY VIA DATA UPDATE precision mathematical functions provided there was a suitable Despite all the successes of genetic improvement GI [7], [3], [6], objective function.
[Show full text]