Stars I Distance and Magnitude Distances How Does One Measure Distance? Stellar Parallax
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astronomy, Astrophysics, and Cosmology
Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson I February 2, 2016 arXiv:0706.1988 L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 1 / 22 Table of Contents 1 Stars and Galaxies 2 Distance Measurements Stellar parallax Stellar luminosity L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 2 / 22 Stars and Galaxies Night sky provides a strong impression of a changeless universe G Clouds drift across the Moon + on longer times Moon itself grows and shrinks G Moon and planets move against the background of stars G These are merely local phenomena caused by motions within our solar system G Far beyond planets + stars appear motionless L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 3 / 22 Stars and Galaxies According to ancient cosmological belief + stars except for a few that appeared to move (the planets) where fixed on sphere beyond last planet The universe was self contained and we (here on Earth) were at its center L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 4 / 22 Stars and Galaxies Our view of universe dramatically changed after Galileo’s telescopic observations: we no longer place ourselves at the center and we view the universe as vastly larger L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 5 / 22 Stars and Galaxies Is the Earth flat? L. A. Anchordoqui (CUNY) Astronomy, Astrophysics, and Cosmology 2-2-2016 6 / 22 Stars and Galaxies Distances involved are so large that we specify them in terms of the time it takes the light to travel a given distance light second + 1 ls = 1 s 3 108 m/s = 3 108m = 300, 000 km × × light minute + 1 lm = 18 106 km × light year + 1 ly = 2.998 108 m/s 3.156 107 s/yr × · × = 9.46 1015 m 1013 km × ≈ How long would it take the space shuttle to go 1 ly? Shuttle orbits Earth @ 18,000 mph + it would need 37, 200 yr L. -
The Hubble Constant H0 --- Describing How Fast the Universe Is Expanding A˙ (T) H(T) = , A(T) = the Cosmic Scale Factor A(T)
Determining H0 and q0 from Supernova Data LA-UR-11-03930 Mian Wang Henan Normal University, P.R. China Baolian Cheng Los Alamos National Laboratory PANIC11, 25 July, 2011,MIT, Cambridge, MA Abstract Since 1929 when Edwin Hubble showed that the Universe is expanding, extensive observations of redshifts and relative distances of galaxies have established the form of expansion law. Mapping the kinematics of the expanding universe requires sets of measurements of the relative size and age of the universe at different epochs of its history. There has been decades effort to get precise measurements of two parameters that provide a crucial test for cosmology models. The two key parameters are the rate of expansion, i.e., the Hubble constant (H0) and the deceleration in expansion (q0). These two parameters have been studied from the exceedingly distant clusters where redshift is large. It is indicated that the universe is made up by roughly 73% of dark energy, 23% of dark matter, and 4% of normal luminous matter; and the universe is currently accelerating. Recently, however, the unexpected faintness of the Type Ia supernovae (SNe) at low redshifts (z<1) provides unique information to the study of the expansion behavior of the universe and the determination of the Hubble constant. In this work, We present a method based upon the distance modulus redshift relation and use the recent supernova Ia data to determine the parameters H0 and q0 simultaneously. Preliminary results will be presented and some intriguing questions to current theories are also raised. Outline 1. Introduction 2. Model and data analysis 3. -
AS1001: Galaxies and Cosmology Cosmology Today Title Current Mysteries Dark Matter ? Dark Energy ? Modified Gravity ? Course
AS1001: Galaxies and Cosmology Keith Horne [email protected] http://www-star.st-and.ac.uk/~kdh1/eg/eg.html Text: Kutner Astronomy:A Physical Perspective Chapters 17 - 21 Cosmology Title Today • Blah Current Mysteries Course Outline Dark Matter ? • Galaxies (distances, components, spectra) Holds Galaxies together • Evidence for Dark Matter • Black Holes & Quasars Dark Energy ? • Development of Cosmology • Hubble’s Law & Expansion of the Universe Drives Cosmic Acceleration. • The Hot Big Bang Modified Gravity ? • Hot Topics (e.g. Dark Energy) General Relativity wrong ? What’s in the exam? Lecture 1: Distances to Galaxies • Two questions on this course: (answer at least one) • Descriptive and numeric parts • How do we measure distances to galaxies? • All equations (except Hubble’s Law) are • Standard Candles (e.g. Cepheid variables) also in Stars & Elementary Astrophysics • Distance Modulus equation • Lecture notes contain all information • Example questions needed for the exam. Use book chapters for more details, background, and problem sets A Brief History 1860: Herchsel’s view of the Galaxy • 1611: Galileo supports Copernicus (Planets orbit Sun, not Earth) COPERNICAN COSMOLOGY • 1742: Maupertius identifies “nebulae” • 1784: Messier catalogue (103 fuzzy objects) • 1864: Huggins: first spectrum for a nebula • 1908: Leavitt: Cepheids in LMC • 1924: Hubble: Cepheids in Andromeda MODERN COSMOLOGY • 1929: Hubble discovers the expansion of the local universe • 1929: Einstein’s General Relativity • 1948: Gamov predicts background radiation from “Big Bang” • 1965: Penzias & Wilson discover Cosmic Microwave Background BIG BANG THEORY ADOPTED • 1975: Computers: Big-Bang Nucleosynthesis ( 75% H, 25% He ) • 1985: Observations confirm BBN predictions Based on star counts in different directions along the Milky Way. -
190 6Ap J 23. . 2 4 8C the LUMINOSITY of the BRIGHTEST
8C 4 2 . 23. J 6Ap 190 THE LUMINOSITY OF THE BRIGHTEST STARS By GEORGE C. COMSTOCK The prevailing opinion among astronomers admits the presence in the heavens of at least a few stars of extraordinary intrinsic bril- liancy. ‘ Gill, Kapteyn, and Newcomb have under differing forms announced the probable existence of stars having a luminosity exceeding that of the Sun by ten-thousand fold or more, possibly a hundred-thousand fold, and Canopus is cited as an example of such a star. It is the purpose of the present article to examine the evidence upon which this doctrine is based, and the extent to which that evidence is confirmed or refuted by other considerations. As respects Canopus, the case is presented by Gill, Researches on Stellar Parallax, substantially as follows. The measured par- allaxes of this star and of a Centauri are respectively ofoio and 0^762, and their stellar magnitudes are — 0.96 and+ 0.40; i. e., Canopus is 3.50 times brighter than a Centauri. The light of the one star, is therefore 3.50 times as great as that of the other. But since a Centauri has the same mass and the same spectrum as the Sun, and therefore presumably emits the same quantity of light, we may substitute the Sun in place of a Centauri in this com- parison, and find from the expression given above that Canopus is more than 20,000 times as bright as the Sun. I have sought for other cases of a similar character, using a method slightly different from that of Gill. -
Measurements and Numbers in Astronomy Astronomy Is a Branch of Science
Name: ________________________________Lab Day & Time: ____________________________ Measurements and Numbers in Astronomy Astronomy is a branch of science. You will be exposed to some numbers expressed in SI units, large and small numbers, and some numerical operations such as addition / subtraction, multiplication / division, and ratio comparison. Let’s watch part of an IMAX movie called Cosmic Voyage. https://www.youtube.com/watch?v=xEdpSgz8KU4 Powers of 10 In Astronomy, we deal with numbers that describe very large and very small things. For example, the mass of the Sun is 1,990,000,000,000,000,000,000,000,000,000 kg and the mass of a proton is 0.000,000,000,000,000,000,000,000,001,67 kg. Such numbers are very cumbersome and difficult to understand. It is neater and easier to use the scientific notation, or the powers of 10 notation. For large numbers: For small numbers: 1 no zero = 10 0 10 1 zero = 10 1 0.1 = 1/10 Divided by 10 =10 -1 100 2 zero = 10 2 0.01 = 1/100 Divided by 100 =10 -2 1000 3 zero = 10 3 0.001 = 1/1000 Divided by 1000 =10 -3 Example used on real numbers: 1,990,000,000,000,000,000,000,000,000,000 kg -> 1.99X1030 kg 0.000,000,000,000,000,000,000,000,001,67 kg -> 1.67X10-27 kg See how much neater this is! Now write the following in scientific notation. 1. 40,000 2. 9,000,000 3. 12,700 4. 380,000 5. 0.017 6. -