Production of Renewable Lipids by the Diatom Amphora Copulata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examination of Zoonotic Bacterial Pathogens in Canine and Feline Raw Meat-Based Diets
F.P.J. van Bree, Utrecht University, 2016 Paper Paper Examination of zoonotic bacterial pathogens in canine and feline raw meat-based diets F.P.J. van Bree, P.A.M. Overgaauw The feeding of raw meat-based diets (RMBD) to companion animals has become increasingly popular in recent years. However, such diets were demonstrated to be possibly contaminated with various zoonotic bacterial species in several studies and so the feeding of these diets could pose a risk to both animal and human health. Data about the situation in the Netherlands, or Europe in general are not available. Therefore, the purpose of this study was to evaluate the contamination of commercial RMBDs available in the Netherlands with zoonotic bacterial pathogens. Thirty-five commercial RMBDs were evaluated via bacterial culture for Escherichia coli O157:H7, extended- spectrum beta-lactamase (ESBL-)producing E. coli, Listeria monocytogenes and Salmonella spp.. E. coli O157:H7 was isolated from eight (23%) products, ESBL-producing E. coli from twenty- eight (80%) products, L. monocytogenes from nineteen (54%) products, other Listeria spp. from fifteen (43%) products, and Salmonella spp. from seven (20%) products. The results of this study demonstrate the need to pay attention to the potential of RMBDs to be a source for zoonotic bacterial pathogens in the Netherlands. These diets cannot be ruled out as a possible source for bacterial infections in both humans and animals and therefore companion animal owners should be informed about the associated risks. Keywords: raw meat-based diet; BARF; E. coli O157; ESBL; Listeria monocytogenes; Salmonella; public health In recent years it has become increasingly popular among of them are intended to provide for a complete diet for dogs dog and cat owners to feed raw meat-based diets (RMBD), and/or cats. -
Coral Feeding on Microalgae Assessed with Molecular Trophic Markers
Molecular Ecology (2013) doi: 10.1111/mec.12486 Coral feeding on microalgae assessed with molecular trophic markers MIGUEL C. LEAL,*† CHRISTINE FERRIER-PAGES,‡ RICARDO CALADO,* MEGAN E. THOMPSON,† MARC E. FRISCHER† and JENS C. NEJSTGAARD† *Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, †Skidaway Institute of Oceanography, 10 Ocean Science Circle, 31411 Savannah, GA, USA, ‡Centre Scientifique de Monaco, Avenue St-Martin, 98000 Monaco, Monaco Abstract Herbivory in corals, especially for symbiotic species, remains controversial. To investi- gate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodo- monas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders. -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I. -
PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
(seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R. -
Microalgae Strain Catalogue
Microalgae strain catalogue A strain selection guide for microalgae users: cultivation and chemical characteristics for high added-value products CONTENTS 1. INTRODUCTION .......................................................................................... 4 2. Strain catalogue ......................................................................................... 5 Anabaena cylindrica ........................................................................................... 6 Arthrospira platensis .......................................................................................... 8 Botryococcus braunii ........................................................................................ 10 Chlorella luteoviridis ......................................................................................... 12 Chlorella sorokiniana ........................................................................................ 14 Chlorella vulgaris .............................................................................................. 16 Dunaliella salina ............................................................................................... 18 Dunaliella tertiolecta ......................................................................................... 20 Haematococcus pluvialis .................................................................................. 22 Microcystis aeruginosa ..................................................................................... 24 Nannochloropsis occulata ............................................................................... -
21 Pathogens of Harmful Microalgae
21 Pathogens of Harmful Microalgae RS. Salomon and I. Imai 2L1 Introduction Pathogens are any organisms that cause disease to other living organisms. Parasitism is an interspecific interaction where one species (the parasite) spends the whole or part of its life on or inside cells and tissues of another living organism (the host), from where it derives most of its food. Parasites that cause disease to their hosts are, by definition, pathogens. Although infection of metazoans by other metazoans and protists are the more fre quently studied, there are interactions where both host and parasite are sin gle-celled organisms. Here we describe such interactions involving microal gae as hosts. The aim of this chapter is to review the current status of research on pathogens of harmful microalgae and present future perspec tives within the field. Pathogens with the ability to impair and kill micro algae include viruses, bacteria, fungi and a number of protists (see reviews by Elbrachter and Schnepf 1998; Brussaard 2004; Park et al. 2004; Mayali and Azam 2004; Ibelings et al. 2004). Valuable information exists from non-harm ful microalgal hosts, and these studies will be referred to throughout the text. Nevertheless, emphasis is given to cases where hosts are recognizable harmful microalgae. 21.2 Viruses Viruses and virus-like particles (VLPs) have been found in more than 50 species of eukaryotic microalgae, and several of them have been isolated in laboratory cultures (Brussaard 2004; Nagasaki et al. 2005). These viruses are diverse both in size and genome type, and some of them infect harmful algal bloom (HAB)-causing species (Table 21.1). -
Wooden Sticks for Plaque Streaking and Microbiological Inoculation
ISSN 1519-6984 (Print) ISSN 1678-4375 (Online) THE INTERNATIONAL JOURNAL ON NEOTROPICAL BIOLOGY THE INTERNATIONAL JOURNAL ON GLOBAL BIODIVERSITY AND ENVIRONMENT Original Article Wooden sticks for plaque streaking and microbiological inoculation might be more cost- effective, but is its large scale use feasible? Quality control methods and proof of concept Métodos de controle de qualidade e prova de conceito para a utilização de palitos de madeira em microbiologia podem ser mais econômicas, mas seu uso em larga escala é viável? Método de controle de qualidade e prova de conceito D. M. Castro e Silvaa* and N. S. Adiwardanab aInstituto Adolfo Lutz – IAL, São Paulo, SP, Brasil bInstituto de Infectologia Emilio Ribas, São Paulo, SP, Brasil Abstract The loop is a material classically used in the laboratory for the purpose of plate streaking and handling biological materials. However, metal loops techniques might be time consuming, considering the amount of time spent to guarantee its cooling process through each inoculation. Furthermore, plastic loops may also represent environmental issues during its production and discard process and can also represent higher costs for the laboratory. Thus, in situations of limited resources, even the simplest materials can be restricted due to logistical and budgetary issues, especially in developing countries. Inspired by demands like these, facing an occasional shortage of supply of laboratory plastic handles, we hereby present a quality control for sterilization methods and cost-effectiveness studies towards the use of wooden sticks in a Latin American country and we discuss the possibility of the large-scale use of this technique. Keywords: microbiology; bacteriology; plaque inoculation; wood; waste management. -
Study of Equipment's Used in Microbiology : Spirit Lamp, Inoculation Loop, Hot Air Oven, Laminar Air Flow (Laf) and Incubato
Study of some equipments Spirit lamp, Inoculation Loop, Hot Air Oven, Laminar Air Flow (LAF) and Incubator By Dr.S.V.Patil, Head, Department of Botany Bhusawal Arts, Science and P.O. Nahata Commerce college,1 Bhusawal Spirit Lamp Alcohol lamp Used for heating , sterilization and combustion. Ethyl alcohol or spirit used as a fuel. Used to proudest open fire. Made of glass, brass, aluminum. Chemical or biological reaction need to heat to get desired product. Flame is limitated i.e. ( 5 centimeters) in height. Lower temp. than glass flame. Flame sterilization of laboratory equipments. 2 Inoculation Loop Aseptic transfer. Loop consists of insulation Handle. screw device at the top. Heat resistance nichrome or platinum wire. Approximately 3 inch long. Wire end is bent round to form a loop. It sterilized by using heating or flaming until it is red hot. Loop mainly used transfer( sub culture) form liquid culture. 3 Hot Air Oven Used for Sterilizing. glassware, petri dishes, test tube, pipettes, metal instrument. Consist of isolated cabinet which held at a constant temp. Sterilization completed 150 – 180 c for 2-4 hrs. Fan fitted in hot air to circulating at a constant temp. Normal sterilization at 160 0C 4 Laminar Air Flow Its allowed to working for long period. Made up of stainless steel with no gaps or joint. PRINCIPLE – based on flow of current to create uniform velocity along parallel line, which helps in transforming microbial culture in aseptic condition to avoid the dust and contamination. Working - filter pad a fan and HEPA filter ( High Efficiency Particulate Air) 5 Fan suck the air through the filter pad where dust is trapped Prefiltered air has to pass the HEPA filter where contamination fungi, bacteria, dust are removed Ultraclean air which is free from fungal & bacterial contamination flows at the velocity of about 27 ± 3 m/minute through work area UV lamp is fitted in working area 6 Before starting work, LAF is put on for 10 – 15 minute. -
Incorporating a Molecular Antenna in Diatom Microalgae Cells Enhances
www.nature.com/scientificreports OPEN Incorporating a molecular antenna in diatom microalgae cells enhances photosynthesis Gabriella Leone1,2, Gabriel De la Cruz Valbuena3, Stefania Roberta Cicco4, Danilo Vona1, Emiliano Altamura1, Roberta Ragni1, Egle Molotokaite2, Michela Cecchin5, Stefano Cazzaniga5, Matteo Ballottari5, Cosimo D’Andrea2,3, Guglielmo Lanzani2,3* & Gianluca Maria Farinola1* Diatom microalgae have great industrial potential as next-generation sources of biomaterials and biofuels. Efective scale-up of their production can be pursued by enhancing the efciency of their photosynthetic process in a way that increases the solar-to-biomass conversion yield. A proof-of- concept demonstration is given of the possibility of enhancing the light absorption of algae and of increasing their efciency in photosynthesis by in vivo incorporation of an organic dye which acts as an antenna and enhances cells’ growth and biomass production without resorting to genetic modifcation. A molecular dye (Cy5) is incorporated in Thalassiosira weissfogii diatom cells by simply adding it to the culture medium and thus flling the orange gap that limits their absorption of sunlight. Cy5 enhances diatoms’ photosynthetic oxygen production and cell density by 49% and 40%, respectively. Cy5 incorporation also increases by 12% the algal lipid free fatty acid (FFA) production versus the pristine cell culture, thus representing a suitable way to enhance biofuel generation from algal species. Time-resolved spectroscopy reveals Förster Resonance Energy Transfer (FRET) from Cy5 to algal chlorophyll. The present approach lays the basis for non-genetic tailoring of diatoms’ spectral response to light harvesting, opening up new ways for their industrial valorization. Drastic changes in climate and reduction in the availability of raw chemical materials are drawing academic and industrial research, as a matter of considerable urgency, towards photosynthetic organisms as living factories for the large-scale production of fuels and active chemical products. -
Carbon-Based Ocean Productivity and Phytoplankton Physiology from Space Michael J
GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 19, GB1006, doi:10.1029/2004GB002299, 2005 Carbon-based ocean productivity and phytoplankton physiology from space Michael J. Behrenfeld,1,2 Emmanuel Boss,3 David A. Siegel,4 and Donald M. Shea5 Received 21 May 2004; revised 19 October 2004; accepted 2 November 2004; published 25 January 2005. [1] Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean’s surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (m) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon- based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans. Citation: Behrenfeld, M. J., E. Boss, D. A. Siegel, and D. M. Shea (2005), Carbon-based ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 19, GB1006, doi:10.1029/2004GB002299. -
Deep Maxima of Phytoplankton Biomass, Primary Production and Bacterial Production in the Mediterranean Sea
Biogeosciences, 18, 1749–1767, 2021 https://doi.org/10.5194/bg-18-1749-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea Emilio Marañón1, France Van Wambeke2, Julia Uitz3, Emmanuel S. Boss4, Céline Dimier3, Julie Dinasquet5, Anja Engel6, Nils Haëntjens4, María Pérez-Lorenzo1, Vincent Taillandier3, and Birthe Zäncker6,7 1Department of Ecology and Animal Biology, Universidade de Vigo, 36310 Vigo, Spain 2Mediterranean Institute of Oceanography, Aix-Marseille Université, CNRS, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France 3Laboratoire d’Océanographie de Villefranche, Sorbonne Université, CNRS, 06230 Villefranche-sur-Mer, France 4School of Marine Sciences, University of Maine, Orono, Maine, USA 5Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, USA 6GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany 7The Marine Biological Association of the United Kingdom, Plymouth, PL1 2PB, United Kingdom Correspondence: Emilio Marañón ([email protected]) Received: 7 July 2020 – Discussion started: 20 July 2020 Revised: 5 December 2020 – Accepted: 8 February 2021 – Published: 15 March 2021 Abstract. The deep chlorophyll maximum (DCM) is a ubiq- 10–15 mgCm−3 at the DCM. As a result of photoacclima- uitous feature of phytoplankton vertical distribution in strati- tion, there was an uncoupling between chlorophyll a-specific fied waters that is relevant to our understanding of the mech- and carbon-specific productivity across the euphotic layer. anisms that underpin the variability in photoautotroph eco- The ratio of fucoxanthin to total chlorophyll a increased physiology across environmental gradients and has impli- markedly with depth, suggesting an increased contribution cations for remote sensing of aquatic productivity. -
Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae
Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development _______________________________________ A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Science _____________________________________________________ by WENNA HU Dr. Zhiqiang Hu, Thesis Supervisor July 2014 The undersigned, appointed by the Dean of the Graduate School, have examined the thesis entitled Dry Weight and Cell Density of Individual Algal and Cyanobacterial Cells for Algae Research and Development presented by Wenna Hu, a candidate for the degree of Master of Science, and hereby certify that, in their opinion, it is worthy of acceptance. Professor Zhiqiang Hu Professor Enos C. Inniss Professor Pamela Brown DEDICATION I dedicate this thesis to my beloved parents, whose moral encouragement and support help me earn my Master’s degree. Acknowledgements Foremost, I would like to express my sincere gratitude to my advisor and mentor Dr. Zhiqiang Hu for the continuous support of my graduate studies, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Without his guidance and persistent help this thesis would not have been possible. I would like to thank my committee members, Dr. Enos Inniss and Dr. Pamela Brown for being my graduation thesis committee. Their guidance and enthusiasm of my graduate research is greatly appreciated. Thanks to Daniel Jackson in immunology core for the flow cytometer operation training, and Arpine Mikayelyan in life science center for fluorescent images acquisition.