Morphology and Taxonomy of the Aphanizomenon Spp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred. -
Potential Cyanobacterial Inoculants for Rice Described from a Polyphasic Approach
Agrociencia Uruguay 2020 | Volume 24 | Number 2 | Article 52 DOI: 10.31285/AGRO.24.52 ISSN 2301-1548 Potential cyanobacterial inoculants for rice described from a polyphasic approach Editor Eduardo Abreo Instituto Nacional de Investigación Potenciales inoculantes Agropecuaria (INIA), Colonia, Uruguay. cianobacterianos para arroz Correspondence descritos desde un enfoque Pilar Irisarri [email protected] polifásico Received 20 May 2019 Accepted 29 Set 2020 Published 09 Nov 2020 Potential cyanobacterial inoculants Citation for rice described from a polyphasic Pérez G, Cerecetto V, Irisarri P. Potential cyanobacterial inocu- lants for rice described from a approach polyphasic approach. Agrocien- cia Uruguay [Internet]. 2020 [cited dd mmm yyyy];24(2):52. Available from: http://agrocien- ciauruguay. uy/ojs/in- dex.php/agrociencia/arti- cle/view/52 Pérez, G. 1; Cerecetto, V. 1; Irisarri, P. 1 1Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay. Potential cyanobacterial inoculants described by a polyphasic approach Abstract Ten heterocyst cyanobacteria isolated from a temperate ricefield in Uruguay were characterized using a poly- phasic approach. Based on major phenotypic features, the isolates were divided into two different morphotypes within the Order Nostocales, filamentous without true branching. The isolates were also phylogenetically evalu- ated by their 16S rRNA and hetR gene sequences. Although the morphological classification of cyanobacteria has not always been supported by the analysis of the 16S rRNA gene, in this case the morphological identifica- tion agreed with the 16S rRNA gene phylogenetic analysis and the ten isolates were ascribed at the genus level to Nostoc or Calothrix. Four isolates were identified at species level. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
Nostocaceae (Subsection IV
African Journal of Agricultural Research Vol. 7(27), pp. 3887-3897, 17 July, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.837 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Phylogenetic and morphological evaluation of two species of Nostoc (Nostocales, Cyanobacteria) in certain physiological conditions Bahareh Nowruzi1*, Ramezan-Ali Khavari-Nejad1,2, Karina Sivonen3, Bahram Kazemi4,5, Farzaneh Najafi1 and Taher Nejadsattari2 1Department of Biology, Faculty of Science, Tarbiat Moallem University, Tehran, Iran. 2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. 3Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014 Helsinki, Finland. 4Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 5Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Accepted 25 January, 2012 Studies of cyanobacterial species are important to the global scientific community, mainly, the order, Nostocales fixes atmospheric nitrogen, thus, contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and -
Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2
life Article Natural Product Gene Clusters in the Filamentous Nostocales Cyanobacterium HT-58-2 Xiaohe Jin 1,*, Eric S. Miller 2 and Jonathan S. Lindsey 1 1 Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; [email protected] 2 Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7615, USA; [email protected] * Correspondence: [email protected] Abstract: Cyanobacteria are known as rich repositories of natural products. One cyanobacterial- microbial consortium (isolate HT-58-2) is known to produce two fundamentally new classes of natural products: the tetrapyrrole pigments tolyporphins A–R, and the diterpenoid compounds tolypodiol, 6-deoxytolypodiol, and 11-hydroxytolypodiol. The genome (7.85 Mbp) of the Nostocales cyanobacterium HT-58-2 was annotated previously for tetrapyrrole biosynthesis genes, which led to the identification of a putative biosynthetic gene cluster (BGC) for tolyporphins. Here, bioinformatics tools have been employed to annotate the genome more broadly in an effort to identify pathways for the biosynthesis of tolypodiols as well as other natural products. A putative BGC (15 genes) for tolypodiols has been identified. Four BGCs have been identified for the biosynthesis of other natural products. Two BGCs related to nitrogen fixation may be relevant, given the association of nitrogen stress with production of tolyporphins. The results point to the rich biosynthetic capacity of the HT-58-2 cyanobacterium beyond the production of tolyporphins and tolypodiols. Citation: Jin, X.; Miller, E.S.; Lindsey, J.S. Natural Product Gene Clusters in Keywords: anatoxin-a/homoanatoxin-a; hapalosin; heterocyst glycolipids; natural products; sec- the Filamentous Nostocales ondary metabolites; shinorine; tolypodiols; tolyporphins Cyanobacterium HT-58-2. -
The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp. -
Major Commercial Products from Micro- and Macroalgae Melinda Griffiths1
Major commercial products from micro‐ and macroalgae Melinda Griffiths1, Susan T.L Harrison1, Monique Smit1,2 and Dheepak Maharajh2 1 Centre for Bioprocess Engineering Research, Department of Chemical Engineering, University of Cape Town, Rondebosch, Cape Town, South Africa, 7701 2 CSIR Biosciences, Bld 18, PO Box 395, Pretoria, South Africa, 0001 [email protected] ‐ 021 650 5523 [email protected] ‐ 021 650 4021 [email protected] – 012 841 2664 Abstract Macro‐and microalgae are used in a variety of commercial products with many more in development. This chapter outlines the major products, species used, methods of production, extraction and processing as well as market sizes and trends. Foods, nutraceuticals and feeds are the major commercial products from algae. Well‐known culinary products include Nori, Wakame, Kombu and Dulse, from whole macroalgal biomass. The microalgae Spirulina and Chlorella have been widely marketed as nutritional supplements for both humans and animals. Several microalgae with a high nutritional value and energy content are grown commercially as aquaculture feed. The major processed products from macroalgae are the hydrocolloids, including carrageenan, agars and alginates, used as gelling agents in a variety of foods and health‐care products. Pigments extracted from algae include β‐carotene, astaxanthin and phycobiliproteins. These are generally used as food colourants, as additives in animal feed or as nutraceuticals for their antioxidant properties (Radmer, 1996; Pulz, 2004). Polyunsaturated fatty acids (PUFAs) are another high‐value product derived from microalgae. Other potential products include fertilizers, fuels, cosmetics and chemicals. Algae also have application in bioremediation and CO2 sequestration, as well as producing many interesting bioactive compounds. -
Isolation and Characterization of 1-Palmitoyl-2-Linoleoyl-Sn
www.nature.com/scientificreports OPEN Isolation and characterization of 1-palmitoyl-2-linoleoyl-sn-glycerol as a hormogonium-inducing factor Received: 19 April 2018 Accepted: 29 January 2019 (HIF) from the coralloid roots of Published: xx xx xxxx Cycas revoluta (Cycadaceae) Yasuyuki Hashidoko 1, Hiroaki Nishizuka1, Manato Tanaka1, Kanako Murata1, Yuta Murai2 & Makoto Hashimoto1 Coralloid roots are specialized tissues of cycads (Cycas revoluta) that are involved in symbioses with nitrogen-fxing Nostoc cyanobacteria. We found that a crude methanolic extract of coralloid roots induced diferentiation of the flamentous cell aggregates of Nostoc species into motile hormogonia. Hence, the hormogonium-inducing factor (HIF) was chased using bioassay-based isolation, and the active principle was characterized as a mixture of diacylglycerols (DAGs), mainly composed of 1-palmitoyl-2-linoleoyl-sn-glycerol (1), 1-palmitoyl-2-oleoyl-sn-glycerol (2), 1-stearoyl-2-linolenoyl- sn-glycerol (3), and 1-stearoyl-2-linoleoyl-sn-glycerol (4). Enantioselectively synthesised compound 1 showed a clear HIF activity at 1 nmol (0.6 µg) disc−1 for the flamentous cells, whereas synthesised 2-linoleoyl-3-palmitoyl-sn-glycerol (1′) and 1-palmitoyl-2-linoleoyl-rac-glycerol (1/1′) were less active than 1. Conversely, synthesised 1-linoleoyl-2-palmitoyl-rac-glycerol (8/8′) which is an acyl positional isomer of compound 1 was inactive. In addition, neither 1-monoacylglycerols nor phospholipids structurally related to 1 showed HIF-like activities. As DAGs are protein kinase C (PKC) activators, 12-O-tetradecanoylphorbol-13-acetate (12), urushiol C15:3-Δ10,13,16 (13), and a skin irritant anacardic acid C15:1-Δ8 (14) were also examined for HIF-like activities toward the Nostoc cells. -
Reconstructed Ancestral Enzymes Suggest Long-Term Cooling of Earth's
Reconstructed ancestral enzymes suggest long-term cooling of Earth’s photic zone since the Archean Amanda K. Garciaa,b,1, J. William Schopfa,b,c,d,1, Shin-ichi Yokoborie, Satoshi Akanumaf, and Akihiko Yamagishie aCenter for the Study of Evolution and the Origin of Life, University of California, Los Angeles, CA 90095; bDepartment of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095; cMolecular Biology Institute, University of California, Los Angeles, CA 90095; dUniversity of Wisconsin Astrobiology Research Consortium, Madison, WI 53706; eDepartment of Applied Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan; and fFaculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama 359-1192, Japan Contributed by J. William Schopf, March 16, 2017 (sent for review February 16, 2017; reviewed by David J. Bottjer, L. Paul Knauth, and Donald R. Lowe) Paleotemperatures inferred from the isotopic compositions (δ18Oand metamorphic resetting of the reported isotopic signatures by δ30Si) of marine cherts suggest that Earth’soceanscooledfrom70± exchange with groundwater and/or recrystallization, respectively 15 °C in the Archean to the present ∼15 °C. This interpretation, how- (e.g., refs. 11–14), and ambiguities regarding the depositional envi- ever, has been subject to question due to uncertainties regarding ronment of some of the cherts analyzed that, if hydrothermal, would oceanic isotopic compositions, diagenetic or metamorphic resetting not be indicative of global surface conditions (e.g., ref. 13). To re- of the isotopic record, and depositional environments. Analyses of solve such questions, an independent line of evidence is necessary. -
Polyphasic Approach and Adaptative Strategies of Nostoc Cf. Commune (Nostocales, Nostocaceae) Growing on Mayan Monuments
Fottea 11(1): 73–86, 2011 73 Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments M. RAMÍ R EZ a,b, M. HE R NÁNDEZ –MA R INÉ a, P. MATEO c, E. BE rr ENDE R O c & M. ROLDÁN d aFacultat de Farmàcia, Unitat de Botànica, Universitat de Barcelona, 08028 Barcelona, Spain bPosgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México cDepartamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain dServei de Microscòpia, Universitat Autònoma de Barcelona, Edifici C, Facultat de Ciències, 08193 Bellaterra, Spain Abstract: An aerophytic Nostoc, from a Mayan monument, has been characterized by phenotypic and molecular approaches, and identified as a morphospecies ofNostoc commune. Phylogenetic analysis indicates that it belongs to a Nostoc sensu stricto clade, which contains strains identified asN. commune. Nostoc cf. commune is found in two close areas: Site I (protected from direct sunlight by a wall), where it forms biofilms on mortar with Trentepohlia aurea; and Site II, where it grows on exposed stucco with the accompanying organism Scytonema guyanense. Over the year, in a habitat dictated by alternating wet and dry seasons, the organisms vary in appearance. Its life cycle comprises two seasonally–determined developmental stages (growth during the wet season and dormancy during the dry season) and two transitional stages (preparation for the dry season, and rehydration and recovery). At the beginning of the wet season the resistant stages from the previous dry season are rehydrated and form propagula, that adopt a colonial shape surrounded by a gelatinous sheath. -
Cyanobacterial Nitrogen Fixation in the Baltic Sea with Focus on Aphanizomenon Sp
Cyanobacterial Nitrogen Fixation in the Baltic Sea With focus on Aphanizomenon sp. Jennie Barthel Svedén ©Jennie Barthel Svedén, Stockholm University 2016 Cover: Baltic Sea Aphanizomenon sp. colonies, modified from original photo by Helena Höglander ISBN 978-91-7649-481-3 Printed in Sweden by Holmbergs, Malmö 2016 Distributor: Department of Ecology, Environment and Plant Sciences Till mamma och pappa ABSTRACT Cyanobacteria are widely distributed in marine, freshwater and terrestrial habitats. Some cyanobacterial genera can convert di-nitrogen gas (N2) to bioavailable ammo- nium, i.e. perform nitrogen (N) fixation, and are therefore of profound significance for N cycling. N fixation by summer blooms of cyanobacteria is one of the largest sources of new N for the Baltic Sea. This thesis investigated N fixation by cyanobac- teria in the Baltic Sea and explored the fate of fixed N at different spatial and temporal scales. In Paper I, we measured cell-specific N fixation by Aphanizomenon sp. at 10 ºC, early in the season. Fixation rates were high and comparable to those in late sum- mer, indicating that Aphanizomenon sp. is an important contributor to N fixation al- ready in its early growth season. In Paper II, we studied fixation and release of N by Aphanizomenon sp. and found that about half of the fixed N was rapidly released and transferred to other species, including autotrophic and heterotrophic bacteria, diatoms and copepods. In Paper III, we followed the development of a cyanobacterial bloom and related changes in dissolved and particulate N pools in the upper mixed surface layer. The bloom-associated total N (TN) increase was mainly due to higher particu- late organic N (PON) concentrations, but also to increases in dissolved organic nitro- gen (DON). -
Thicker Filaments of Aphanizomenon Gracile Are
Wejnerowski et al. Zoological Studies (2015) 54:2 DOI 10.1186/s40555-014-0084-5 RESEARCH Open Access Thicker filaments of Aphanizomenon gracile are more harmful to Daphnia than thinner Cylindrospermopsis raciborskii Lukasz Wejnerowski*, Slawek Cerbin and Marcin Krzysztof Dziuba Abstract Background: Filamentous cyanobacteria are known to negatively affect the life history of planktonic herbivores through mechanical interference with filtering apparatus. Here, we hypothesise that not only the length but also the thickness of cyanobacterial filaments is an important factor shaping the life history of Daphnia. Results: To test our hypothesis, we cultured Daphnia magna with non-toxin-producing strains of either Aphanizomenon gracile or Cylindrospermopsis raciborskii. The former possesses wide filaments, whereas the latter has thinner filaments. The strain of A. gracile has two morphological forms differing in filament widths. The exposure to the thicker A. gracile filaments caused a stronger body-length reduction in females at maturity and a greater decrease in offspring number than exposure to the thinner C. raciborskii filaments. The width of filaments, however, did not significantly affect the length of newborns. The analysis of mixed thick and thin A. gracile filament width distribution revealed that D. magna reduces the number of thinner filaments, while the proportion of thicker ones increases. Also, the effects of cyanobacterial exudates alone were examined to determine whether the changes in D. magna life history were indeed caused directly by the physical presence of morphologically different filaments and not by confounding effects from metabolite exudation. This experiment demonstrated no negative effects of both A. gracile and C. raciborskii exudates. Conclusions: To our knowledge, this is the first study that demonstrates that the thickness of a cyanobacterial filament might be an important factor in shaping D.