Mechanical and Physical Properties of Glass Wool-Rigid Polyurethane Foam Composites

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical and Physical Properties of Glass Wool-Rigid Polyurethane Foam Composites Al-Nahrain University, College of Engineering Journal (NUCEJ) Vol.18 No.1, 2015 pp.41 - 49 Mechanical and Physical Properties of Glass Wool-Rigid Polyurethane Foam Composites Ismail Ibrahim Marhoon* Aseel Kais Rasheed Material Engineering Department/ College of Ministry of science and technology / Renewable Engineering/Al-Mustansiriya Energy Directorate University/Baghdad *E-mail: [email protected] Abstract foams are obtained by the reaction of isocyanate This research is devoted to the preparation of with polyols, which, depending on the foam polymer matrix composite materials by formulation, regulate the properties of the forming in place method, where the composite material. Their foaming is possible due to the foam material was prepared from the rigid in situ generation of a foaming agent during the polyurethane foam (PU) as a matrix reinforced by exothermal polymerization reaction, leading to glass wool insulator with weight fractions (2%, crosslinked foams with changeable cellular 4%, 6%, 8% and 10%) .Several mechanical and structures[5]. Depending on the amount, physical tests were done and these include impact, proportions and characteristics of the components, flexural, compression, hardness, density, water it is possible to obtain three categories of absorption and thermal conductivity. The result polyurethanes foams which are flexible shows that the values of mechanical and physical polyurethanes, semi rigid polyurethanes and rigid properties in general are increased with the polyurethanes with different densities and cellular increase of glass wool weight fraction content. structures, and thus adjustable properties [5, 6]. The values of flexural strength decrease with the Besides, given that both basic components are increase of weight fraction of glass wool fiber liquid at room temperature, it is relatively after 8% wt. easy to incorporate fillers and reinforcements further, extending the applicability of these Keywords- Rigid polyurethane foam, Glass lightweight materials [7]. wool, foam composite, density, thermal Glass wool insulation is felt materials made of conductor, flexural strength, hardness, impact glass with binder by heating and solidifying. It strength, water absorption, polyol-isocyanate. has good flexibility, affordable price and it is easy to install. Features of fiber glass wool are nature 1. Introduction products, acoustical absorption, high thermal In a country like Iraq, where large seasonal resistance with low thermal conductivity variations in temperatures occur, thermal (Working temperature at about 450 ºC), fire safe insulation is quite important. Though designing materials and environmental friendly materials [8- the building for obtaining thermal and sound 12]. Typical final nominal fiber diameters range insulation characteristics involves additional from 4 µm to 15 µm. and softening point is 675 expenditure, it is well compensated by the ºC [13]. comfortable and healthy environment obtained. Composite polymer foams are materials of a The polyurethanes (PU) foams are widely used polymer phase with voids and an additional solid as insulating and core materials for furniture, or hollow phase distributed throughout the cooling and freezing systems, in house building, polymer, while Foams or cellular materials are ship building, piping, tanks, etc.[1,2]. The use of materials that have a regular arrangement of cells rigid foams is a result of their low heat conduction and solid struts. Thus, the term composite foam coefficient, low density, low water absorption and excludes conventional, single-phase foams made relatively good mechanical strength [3]. The PU by expanding polymers such as (polystyrene, foams have been applied also as core materials of polyurethane, or polypropylene), also excluded sandwich constructions with steel plates, in are structures with single-phase core materials building the industrial houses carrying freezers and covered with a solid skin because the second and cold stores, where they have to fulfill both phase, the skin, is not dispersed throughout the insulating and mechanical requirements. In polymer phase [14]. addition, polyurethane products, for the most part, Composite foams can be classified as follows: are self-supporting, which makes them useful as syntactic foam, particle reinforced foam and fiber- construction insulation panels and as structural reinforced foam. The additional solid components elements in construction applications [3, 4]. PU are combined to enhance certain properties 14 NUCEJ Vol.18 No.1. 2015 Marhoon, Rasheed pp.41 - 49 important to the function of the composite foam Thereafter, part-B (MDI) was added to the part such as strength, stiffness, electrical or mixture and mixed at a similar speed for another thermal conductivity [14, 15]. 15 sec. and the mixture was left to produce expanded foam. All composite foams were cured 2. Objective at ambient temperature (25◦C) for 72 hr., and Polyurethane foam is very talented rigid glass wool was added based on weight percentage polymer foam for shock, acoustic and thermal of the overall weight of polyol and MDI resin insulating applications, but it has limitations (w/w %) which were (2, 4, 6, 8,10) %wt. as which exclude its application as a single material. shown in Figure (2). Polyurethane properties are modified by controlling the stages of syntheses or by using 3.3 Foam Composites Measurement fibrous reinforcement additives to overcome some Methods of these limitations. For example, one of the main The specimens were cut according to the limitations of rigid PU foams comes from their standard dimensions for each test. An average of reduced mechanical properties in the case of three different determinations was obtained for all sandwich structures, increasing the risk of experiments except for hardness test, where five possible core crushing, shear or debonding readings were taken from different places of one from the surface skins. The aim of the present sample. The mechanical properties of the foams work is the synthesis of rigid polyurethane foams were conducted parallel to foam rise direction. (PU) modified with short glass fibers in the form Flexure tests are performed with 2.5 kN load at a of (glass wool). The effects of glass wool speed of 2 mm/min. The tests were performed insulation on the foams have been analyzed in according to ASTM D 790-03 [18]. Compression terms of density, thermal conductivity, water strength was determined according to ASTM absorption, mechanical properties (impact, D1621-00 [19]. Impact test was performed compression and flexural ). according to ASTM D4812-99 for unnotched Izod impact test [20]. Density of the foam was 3. Experimental measured according to ASTM D1622-03 [21]. 3.1 Materials Hardness test was performed by using Shore hardness (D) and according to ASTM F1957–99 A two-component polyurethane foam (PU) [22]. Water Absorption test was performed system specifically formulated for the preparation according to ASTM D570-98 [23]. Thermal of medium–high density rigid PU foams ® conductivity was measured using Lee's Disk with (POLYFOAM 55 ) was produced by sample dimensions of 40 mm diameter and 5 mm (POLYBIT), where part-A is a mixture of polyol, thickness. The instrument consists of a heating blowing and curing agents, catalysts and coil and three brass disks. The specimen was stabilizers, with a viscosity of 900 cps at 20 ◦C 3 secured between the brass disks (1, 2) and the and a density of 1.14 g/cm , and part-B is a heating coil was fixed between the brass disks (2, modified diphenylmethane-diisocyanate (MDI), 3). The applied voltage across the terminal of the with a viscosity of 200 cps at 25 ◦C and a density 3 heating coil is 6 V. and the current is 0.2 A. A of 1.24 g/cm . Both components are liquid at heating heater was used to heat the three brass room temperature [16]. Glass wool (URSA ® disks (1, 2, 3) and heat transfer was through the GLASSWOOL ) insulation was produced by specimen from the bass disk (2) to brass disk (1). URSA Uralita group –Turkey, have a density of 3 The temperature of the disks increases gradually 16 kg/m and an individual fiber diameter until it reaches the equilibrium temperature of all between 6.1- 7.7 μm [17]. disks. 3.2 Composite Foam Preparation 4. Results and Discussion Rigid PU-based foams were prepared by 4.1 Physical Properties mixing equal amount 1:1 of part-A (polyol) and 4.1.1 Water Absorption part B (isocyanate (MDI)) components for 15 s Figure (3) show the relationship between water and pouring in a wooden mould (60×90×195 mm) absorption percentage and weight fraction of the as shown in Figure (1). The mould was closed glass wool filler, which were added to the rigid with a lid and the mixture was allowed for PU’s polyurethane foam. Water absorption behavior of synchronized polymerization and foaming. Rigid polymer filled composites at a particular PU reinforced composite foams were prepared by environmental condition is determined by many forming in place method by initially pre-mixing factors, such as processing techniques, matrix glass wool insulation (were dried for 24 hr. at ◦ filler characteristics, composition of the 100 C) with the polyol prior to pouring into the composites, and duration of immersion in water mold with hand mixing for 1 min. after the [24]. The results had revealed that the water mixture was allowed to degas for 2 min. into a absorption percentage increases with increasing wooden mould lined with aluminum foil. 14 NUCEJ Vol.18 No.1. 2015 Marhoon, Rasheed pp.41 - 49 weight fraction of
Recommended publications
  • Natural Materials for the Textile Industry Alain Stout
    English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ...................................................................................................................
    [Show full text]
  • Thermal and Acoustic Insulating Panels for Buildings
    THERMAL AND ACOUSTIC INSULATING PANELS FOR BUILDINGS RECYCLING TEXTILE WASTE BY ECOFIBRA IN CHILE Since 2018, the company Ecofibra created by the engineer Franklin Zepeda, operates in Chile recycling and transforming textile waste into ecological panels for thermal and acoustic insulation of buildings. Ecofibra's products are manufactured as mats, blankets, sheets and bulk, with different densities, thicknesses and insulating capacities, allowing an efficient shelter of all types of buildings, new houses or renovated. By mixing wood with the insulating mat, Ecofibra also commercializes finished ecological panels. These products have fireproof properties and the same insulation coefficient as the traditional panels available on the market in Chile, while being less expensive. The production process is totally circular: at the end of use, the thermal panels can be returned to the company, which recycles them without generating any waste. The Ecofibra company was created in the municipality of Alto Hospicio in the Tarapacá Region, to solve the problem of the huge quantities of textile waste generated from the import of used clothing in this Free Zone. According to estimates, 80% of the used clothing that arrives in the Region ends up in clandestine dumps near this city. The Ecofibra business project, which is inspired by the principles of circular economy, has been designed in 2016 to create an efficient and ecological alternative for the construction sector, taking advantage of textile waste as a recyclable resource. The 500 sqm plant of Ecofibra was established in 2018 in the municipality of Alto Hospicio, with a capacity to produce 800 panels a day, processing four tonnes a day of textile waste, most of which coming from the surrounding area.
    [Show full text]
  • How to Choose the Right Mineral Wool for Insulation How to Choose the Right Mineral Wool for Insulation
    ADVERTORIAL BUILDING INSULATION TECHNICAL INSULATION How to Choose the Right Mineral Wool for Insulation How to Choose the Right Mineral Wool for Insulation 3 20 How to Choose the Right The Manufacturing Process Mineral Wool for Insulation of ROCKWOOL Stone Wool 4 22 Fire Safety and Resistance Application of ROCKWOOL to High Temperatures Stone Wool Products 10 Usage and Maintenance of the Buildings 12 Efficiencies and Cost Savings 13 Mechanical Properties of Mineral Wool 15 Designed Occupancy Comfort Level 18 Green Product and Sustainability 2 How to Choose the Right Mineral Wool for Insulation How to choose the right mineral wool for insulation Mineral wool is commonly used as an insulation material in buildings and built structures. There are different types of mineral wool, produced from a variety of production methods and technologies and are generally available in a wide variety of forms. A key consideration for designers, consultants, builders and building owners when choosing the right type of mineral wool insulation is to ensure that it meets their requirements on application and design parameters. Based on industry practices and contemporary building design that focuses on values and benefits mineral wool is used within building elements to perform and complement these conditions: Fire safety and resistance to high temperatures Usage and maintenance of the buildings Efficiencies and cost savings Designed occupancy comfort level Green product and sustainability The samples that were studied in this document draw references to commonly available mineral wool and its applications within buildings, tabulated in the table below. ROCKWOOL stone wool 40-60kg/m3 Drywall partition and single skin roof Elaborations and data shown in this document are based on third party laboratory and ROCKWOOL internal tests where empirical 60kg/m3 and above Double skin roof estimation and calculations are made.
    [Show full text]
  • Project B-209 GLASS WOOL INSULATION A
    Project B-209 GLASS WOOL INSULATION A Manufacturing Opportunity in Georgia Prepared for The Georgia Department of Industry and Trade 100 State Capitol Atlanta, Georgia by Harvey Diamond Industrial Development: Division Engineering Experiment Station GEORGIA INSTITUTE OF TECHNOLOGY September 1964 Table of Contents Page Summary INTRODUCTION 1 THE MARKETS 3 National Market 3 Southeastern Market 3 RAW MATERIALS 8 ADVANTAGES OF A GEORGIA LOCATION 10 Freight Savings 10 Labor Cost Savings 11 Added Labor Advantages 13 Fuel Costs 13 CONCLUSION 17 APPENDICES 18 1. Correlation between the Value of Shipments of Mineral Wool and Residential and Nonresidential Construction 19 2. Carload Freight Rates for Fiber Glass Insulation Mate- rial and Average Rates to the Southeastern Market 20 Figure 1. Sales Trend of Mineral Wool 4 Tables 1. Total Value of Building Permits Authorized in the South- east as Percentage of Value in the U. S., 1954-1962 5 2. Annual Wholesale Sales of Construction and Lumber Mate- rials in Principal Southeastern Cities 6 3. Freight Costs for Shipping Glass Insulation Products to the Southeast 11 4. Labor Productivity of Selected Glass Industries in Georgia and Major Glass Wool Producing States 12 5. Comparative Natural Gas Rates for 23 U. S. Cities 15 6. Total Freight, Labor, and Gas Savings of Georgia Plant over Existing Glass WooL Insulation Plants 17 Page 1. Locations of Plants Manufacturing Glass Wool Insulation Products 2 2. Wholesale Sales of Construction and Lumber Materials in Standard Metropolitan Areas in the Southeast 7 3. Sources of Raw Materials for Glass Wool Manufacture 9 4. Natural Gas Facilities in Georgia 14 Summary A Georgia manufacturer of glass wool can supply $5 million worth of insu- 1/ lation products to the Southeast- at cost savings of between $348,000 and $819,000 over existing plants now competing for the same market.
    [Show full text]
  • Analysis of Mineral Fibers Used in the Vintage Speaker
    MedDocs Publishers ISSN: 2639-4391 Annals of Epidemiology & Public Health Open Access | Review Article Analysis of mineral fibers used in the vintage speaker Il Je Yu1*; Bruce Kelman2 1HCT CO. Icheon, Korea 2JS Held, Seattle *Corresponding Author(s): Il Je Yu Abstract HCTm CO., LTD. Seoicheon-ro 578 beon-gil, Risk of Exposure to asbestos from unknown consumer Majang-myeon, Icheon, 17383, Korea products always has been worrying to consumers. Especially, Tel: 031-645-6358, Fax: 031-645-6358; consumer products manufactured before the asbestos ban would contain asbestos in their products. Consumers wor- Email: [email protected] ried about exposure to asbestos from the vintage speakers manufactured before the asbestos ban during use or repair- ing. In this study, we have analyzed mineral fibers sampled Received: Mar 02, 2020 from the AR-3a speakers which were manufactured in 1973. The mineral samples were collected when the speakers were Accepted: Apr 13, 2020 repaired and analyzed by Transmission Electron Microscope Published Online: Apr 15, 2020 (TEM) equipped with an Energy Dispersive X-Ray Analyzer Journal: Annals of Epidemiology and Public health (EDX) for their detained composition. The TEM-EDX analysis of the mineral fibers sampled from the speaker indicated Publisher: MedDocs Publishers LLC that the fibers were glass wool, not asbestos fiber. Online edition: http://meddocsonline.org/ Copyright: © Yu IJ (2020). This Article is distributed under the terms of Creative Commons Attribution 4.0 International License Keywords: Asbestos; AR-3a speaker; Mineral fiber; Glass wool; Transmission electron microscopy Introduction Asbestos exposure always has been a social issue in Korea propagated extensively into the living environment during the after banning of use, import and manufacturing more than Saemaol Woondong (New Town movement) period from the 0.1% asbestos-containing products on Jan 1, 2009, accord- early 1970s through the 1980s.
    [Show full text]
  • Flow of a Disperse Emulsion of Crude Oil in Water in Porous Media
    SOCIETY OF PETROLEUM ENGINEERS OF AIME 6200North Central Expressway =~~ SPE 2481 Dallas, Texas i’5206 THIS IS A PREPRINT --- SUBJECT TO CORRECTION Flow of a Disperse Emulsion of Crude Oil in Water in Porous Media By Downloaded from http://onepetro.org/speatce/proceedings-pdf/69fm/all-69fm/spe-2481-ms/2069416/spe-2481-ms.pdf by guest on 25 September 2021 John c. (!artmill,U.S. Geological Survey, and Parke A. Dickeyj u. of ~lsa~ Members Am @ Copyright 1969 . m ... IM?-!-- M..a-ll.. -Anm American msmute of Iumwg, 1.1CLC9.SUX~lua.,I -w.“A .P&A.~m.. .. .. l@@?ers9 h!. This paper was prepared for the khth Annual Fall Meeting of the Society of Petroleum Engineers of AIME, to be held in Denver, Colo., Sept. 28-Ott. 1, 1969. Permission to copy is restrictedto an abstract of not more than 300 words. Illustrationsmay not be copied. The abstract should contain conspicuousacknowledgmentof where and by whom the paper is presented. Publicationelsewhere after publication in the JOURNAL OF PETROLEUM TECHNOLOGY or the SOCIETY OF PETROLEUM ENGINEERS JCXJRNALis usually granted upon request to the Editor of the appropriate journalprovided agreement to give proper credit is made. Discussion of this paper is invited. Three copies of any discussion should be sent to the Society of Petroleum Engineers office. Such discussionmay be presented at the above meeting and, with the paper, may be consideredfor publication in one of the two S?E magazines. ABSTRACT disperse, oil-in-wateremulsions. Our current ideas on multiphase flow in porous media may It has been suggested that oil migrates not apply to disperse emulsions.
    [Show full text]
  • Background Report, AP-42, Vol. I, SECTION 11.18 Mineral Wool
    EMISSION FACTOR DOCUMENTATION FOR AP-42 SECTION 11.18 (Formerly 8.16) Mineral Wool Manufacturing 1. INTRODUCTION The document Compilation of Air Pollutant Emission Factors (AP-42) has been published by the U. S. Environmental Protection Agency (EPA) since 1972. Supplements to AP-42 have been routinely published to add new emission source categories and to update existing emission factors. AP-42 is routinely updated by EPA to respond to new emission factor needs of EPA, State and local air pollution control programs, and industry. An emission factor relates the quantity (weight) of pollutants emitted to a unit of activity of the source. The uses for the emission factors reported in AP-42 include: 1. Estimates of areawide emissions; 2. Estimates of emissions for a specific facility; and 3. Evaluation of emissions relative to ambient air quality. The purpose of this report is to provide background information from test reports and other information to support preparation of AP-42 Section 8.16, Mineral Wool Manufacturing. This background report consists of five sections. Section 1 includes the introduction to the report. Section 2 gives a description of the mineral wool industry. It includes a characterization of the industry, an overview of the different process types, a description of emissions, and a description of the technology used to control emissions resulting from mineral wool production operations. Section 3 is a review of emission data collection and laboratory analysis procedures. It describes the literature search, the screening of emission data reports, and the quality rating system for both emission data and emission factors.
    [Show full text]
  • F:\Land Use Codes\Land Use Codes
    Provo City Land Use Codes - Numerical Order (Note: NEC stands for Not Elsewhere Classified) Living Areas 1000 1100 Household Units .....................................................1100 Single Family Dwelling ...................................................1110 Boarding house with four or fewer boarders ....................................1111 Cabins, periodic use, non commercial .........................................1111 Farm homes.............................................................1111 Household units, single family, detached ......................................1111 Ranch or farm dwelling ....................................................1111 Rooming house with 4 or less roomers ........................................1111 Single family dwelling, detached, with or without garage on one parcel ..............1111 Single family housing unit, detached ..........................................1111 Single family dwelling, attached, one or more single family dwelling, each separate parcel .................................................1112 Single family dwelling attached to nonresidential use, commercial or industrial ........1113 Mobile home single family dwelling on parcel with other household units ............1114 Single family dwelling, mobile home on same parcel as residential use ..............1114 Mobile home single family dwelling on parcel with nonresidential structure or use .....1115 Single family dwelling, mobile home on same parcel as nonresidential unit ...........1115 Mobile home single family dwelling
    [Show full text]
  • Environmental Impacts of Petroleum Production: Initial Results from the Osage-Skiatook Petroleum Environmental Research Sites, Osage County, Oklahoma
    Environmental Impacts of Petroleum Production: Initial Results from the Osage-Skiatook Petroleum Environmental Research Sites, Osage County, Oklahoma Water-Resources Investigations Report 03-4260 U.S. Department of the Interior U.S. Geological Survey ENVIRONMENTAL IMPACTS OF PETROLEUM PRODUCTION: INITIAL RESULTS FROM THE OSAGE-SKIATOOK PETROLEUM ENVIRONMENTAL RESEARCH SITES, OSAGE COUNTY, OKLAHOMA U.S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS REPORT 03-4260 Prepared in cooperation with the U.S. Environmental Protection Agency Department of Energy National Petroleum Technology Office Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government ENVIRONMENTAL IMPACTS OF PETROLEUM PRODUCTION: INITIAL RESULTS FROM THE OSAGE-SKIATOOK PETROLEUM ENVIRONMENTAL RESEARCH SITES, OSAGE COUNTY, OKLAHOMA Yousif K. Kharaka and James K. Otton, editors U.S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS REPORT 03-4260 Prepared in cooperation with the U.S. Environmental Protection Agency Department of Energy National Petroleum Technology Office Menlo Park, California 2003 ii U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY CHARLES G. GROAT, Director For Additional Information Copies of this report may be Write to: obtained from the authors or Yousif K. Kharaka U.S. Geological Survey U. S. Geological Survey, MS 427 Information Center 345 Middlefield Road Box 25286, MS 517 Menlo Park, California 94025, USA Denver Federal Center Mail: [email protected] Denver, CO 80225 More current information about the OSPER "A" and "B" sites is available at: http://ok.water.usgs.gov/skiatook/ iii Contents Page Introduction and Summary By Yousif K. Kharaka and James K.
    [Show full text]
  • Degradation of Glass Mineral Wool Insulation After 25 Years in Masonry Cavity Walls
    International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) Volume 1, Issue 5 (2013) ISSN 2320-4079; EISSN 2320–4087 Degradation of Glass Mineral Wool Insulation after 25 Years in Masonry Cavity Walls Francesca Tittarelli, Francesca Stazi, Giacomo Politi, Costanzo di Perna, and Placido Munafò isotherm of several insulation materials. In 2005, Achchaq et Abstract—An experimental study was carried out on glass wool al. [2] studied through several laboratory tests the, insulation extracted from the cavity of vertical envelope of buildings morphological and thermo-physical proprieties of two new constructed in the 1980s to evaluate the insulation conservation state panel of glass wool. In 2006, Jirickovaet al. [3] determined the after 25 years. Laboratory tests on insulation samples were carried hydro-thermal behavior of two new hydrophilic mineral wool. out to assess any changes of the morphological, chemical, physical and thermal properties of the material. The results show that in glass In 2007, the same research group [4] analyzed the hydro- mineral wool insulation, the glass fibers and the binder were affected thermal performances of two typologies of wall with an by a degradation process thus increasing both water absorption and interior thermal layer of hydrophilic mineral wool through thermal conductivity. laboratory measuring tools. In the same year, Björk et al. [5] compared the hydro-thermal characteristics of glass wool, Keywords—Glass wool, thermal insulation material, durability, melamine foam and corrugated sheets of cellulose plastic at hydro-thermal performance. different temperature and moisture conditions. Most recently, the moisture condensation in fibrous insulation materials with I. INTRODUCTION various densities under different levels of moisture content HE recent 2012/27/UE Directives for the promotion of the using appositely designed moisturizing devices has been T energy efficiency in Europe have underlined the analyzed [6, 7].
    [Show full text]
  • Decarbonisation Options for the Dutch Stone Wool Industry
    DECARBONISATION OPTIONS FOR THE DUTCH STONE WOOL INDUSTRY R. Krijgsman, M. Marsidi 12 December 2019 Manufacturing Industry Decarbonisation Data Exchange Network Decarbonisation options for the stone wool industry © PBL Netherlands Environmental Assessment Agency; © ECN part of TNO The Hague, 2019 PBL publication number: 3722 TNO project no. 060.33956 / TNO publication number: TNO 2019 P11127 Authors R. Krijgsman and M. Marsidi Acknowledgements We thank Kirstin Goossens (Rockwool B.V.) for her valuable help and comments. MIDDEN project coordination and responsibility The MIDDEN project (Manufacturing Industry Decarbonisation Data Exchange Network) was initiated and is also coordinated and funded by PBL and ECN part of TNO. The project aims to support industry, policymakers, analysts, and the energy sector in their common efforts to achieve deep decarbonisation. Correspondence regarding the project may be addressed to: K.M. Schure (PBL), [email protected], or A.W.N van Dril (TNO), [email protected]. Production coordination PBL Publishers This publication is a joint publication by PBL and ECN part of TNO and can be downloaded from: www.pbl.nl/en. Parts of this publication may be reproduced, providing the source is stated, in the form: R. Krijgsman and M. Marsidi (2019), Decarbonisation options for the Dutch stone wool industry. PBL Netherlands Environmental Assessment Agency and ECN part of TNO, The Hague. PBL Netherlands Environmental Assessment Agency is the national institute for strategic policy analysis in the fields of the environment, nature and spatial planning. We contribute to improving the quality of political and administrative decision-making by conducting outlook studies, analyses and evaluations in which an integrated approach is considered paramount.
    [Show full text]
  • Chapter 8.2 Man-Made Vitreous Fibres
    Chapter 8.2 Man-made vitreous fibres General description Physical and chemical properties Fibres are divided into naturally occurring and man-made (synthetic) fibres. Each of these groups can be subdivided into organic and inorganic fibres. Man-made vitreous fibres (MMVF) are a large subgroup of inorganic fibres. Fibre dimensions established in the 1960s for the measurement of asbestos fibres are used to denote which fibres should be counted for occupational safety: these are fibre length (FL) > 5 µm, fibre diameter (FD) < 3 µm and aspect ratio (FL/FD) > 3. Vitreous fibres are currently the commercially most important group of fibres, although in future crystalline fibres (e.g. fibres from aluminium oxide, silicon carbide, silicon nitride and carbon) may become increasingly important. MMVF are made from glass, natural rock or any readily fusible slag, and are all amorphous silicates. The terms “glass”, “rock”, “slag” and “ceramic” fibres refer to the starting materials. These terms are used commercially and are now also used in the scientific literature. Consequently, they erroneously create the impression that they denote a biologically relevant delimitation. This is not the case, particularly with regard to their durability in the lung or similar biological milieu. They are also unsuitable terms for the assessment of carcinogenicity, as the properties of the main types currently produced cannot be generally applied to all of the manufactured types bearing the same trade name. To make the final product, manufacturers add a thin binder to the fibres. The composition and proportional quantity of the binder may differ considerably, both between manufacturers and according to requirements for the end product.
    [Show full text]