Direct Synthesis of Barium Titanium Oxyhydride Promising for Electrode Material with Hydrogen Permeability
Direct synthesis of barium titanium oxyhydride promising for electrode material with hydrogen permeability Tasuku Uchimura,ab Fumitaka Takeiri,abc Kei Okamoto,ab Takashi Saitode, Takashi Kamiyamade, and Genki Kobayashi*ab aDepartment of Materials Molecular Science, Institute for Molecular Science, 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan. bSOKENDAI (The Graduate University for Advanced Studies), 38 Nishigo-naka, Myodaiji, Okazaki, Aichi 444-8585, Japan. cPRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan. dDepartment of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 2-4 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan. eSOKENDAI (The Graduate University for Advanced Studies), 2-4 Shirakata, Tokai, Naka, Ibaraki, 319-1106, Japan. *Corresponding author (E-mail): gkobayashi@ims.ac.jp Abstract – Barium titanium oxyhydride BaTiO3–xHx is a promising functional material that exhibits H /e– mixed conduction and catalytic activity. Here we firstly report a direct synthesis of BaTiO3–xHx by a mechanochemical method. The prepared polycrystalline sample was able to work as electrodes with hydrogen permeability. Introduction Oxyhydrides, wherein hydride ions (H–) stabilized in oxide frameworks, have recently become a new topic of materials science. Representative examples are the first 1 case of transition-metal oxyhydride LaSrCoO3H0.7, unusual pnictide superconductor 2,3 – 4 LaFeAsO1–xHx, and pure H conductor La2–x–ySrx+yLiH1–x+yO3–y. In particular, titanium perovskite BaTiO3–xHx is an important piece that exhibits metallic electronic conduction and high anion exchangeability.5–7 Such properties afford valuable chemical functions 8,9 represented by catalytic activity for NH3 synthesis and CO2 reduction. Furthermore, the H–/e– mixed conducting nature should be promising for the use of electrodes capable of hydrogen transmission in electrochemical devices for chemical/energy conversion.
[Show full text]