Regulators of Autophagosome Formation in Drosophila Muscles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation. -
Knowledge Management Enviroments for High Throughput Biology
Knowledge Management Enviroments for High Throughput Biology Abhey Shah A Thesis submitted for the degree of MPhil Biology Department University of York September 2007 Abstract With the growing complexity and scale of data sets in computational biology and chemoin- formatics, there is a need for novel knowledge processing tools and platforms. This thesis describes a newly developed knowledge processing platform that is different in its emphasis on architecture, flexibility, builtin facilities for datamining and easy cross platform usage. There exist thousands of bioinformatics and chemoinformatics databases, that are stored in many different forms with different access methods, this is a reflection of the range of data structures that make up complex biological and chemical data. Starting from a theoretical ba- sis, FCA (Formal Concept Analysis) an applied branch of lattice theory, is used in this thesis to develop a file system that automatically structures itself by it’s contents. The procedure of extracting concepts from data sets is examined. The system also finds appropriate labels for the discovered concepts by extracting data from ontological databases. A novel method for scaling non-binary data for use with the system is developed. Finally the future of integrative systems biology is discussed in the context of efficiently closed causal systems. Contents 1 Motivations and goals of the thesis 11 1.1 Conceptual frameworks . 11 1.2 Biological foundations . 12 1.2.1 Gene expression data . 13 1.2.2 Ontology . 14 1.3 Knowledge based computational environments . 15 1.3.1 Interfaces . 16 1.3.2 Databases and the character of biological data . -
4 Understanding the Role of GNA13 Deregulation in Lymphomagenesis
Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 i v ABSTRACT Integrative Genomics Reveals a Role for GNA13 in Lymphomagenesis by Adrienne Greenough University Program in Genetics and Genomics Duke University Approved: ___________________________ Sandeep Dave, Supervisor ___________________________ Fred Dietrich ___________________________ Jack Keene ___________________________ Yuan Zhuang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Genetics and Genomics in the Graduate School of Duke University 2014 Copyright by Adrienne Greenough 2014 Abstract Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing. In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis. -
A Distinct Inflammatory Gene Expression Profile in Patients with Psoriatic Arthritis
Genes and Immunity (2006) 7, 583–591 & 2006 Nature Publishing Group All rights reserved 1466-4879/06 $30.00 www.nature.com/gene ORIGINAL ARTICLE A distinct inflammatory gene expression profile in patients with psoriatic arthritis AK Stoeckman1, EC Baechler1, WA Ortmann1, TW Behrens1, CJ Michet2 and EJ Peterson1 1Department of Medicine, University of Minnesota Medical School, Center for Immunology, University of Minnesota, Minneapolis, MN, USA and 2Division of Rheumatology, Mayo Clinic, Rochester, MN, USA Psoriatic arthritis (PsA) is a systemic inflammatory condition featuring polyarthritis associated with psoriasis. Apart from clinical indicators, few biomarkers exist to aid in the diagnosis and management of PsA. We hypothesized that whole blood gene expression profiling would provide new diagnostic markers and/or insights into pathogenesis of the disease. We compared whole blood gene expression profiles in PsA patients and in age-matched controls. We identified 310 differentially expressed genes, the majority of which are upregulated in PsA patients. The PsA expression profile does not significantly overlap with profiles derived from patients with rheumatoid arthritis or systemic lupus erythematosus. Logistic regression identified two lymphocyte-specific genes (zinc-finger protein 395 and phosphoinositide-3-kinase 2B) that discriminate PsA patients from normal controls. In addition, a highly coregulated cluster of overexpressed genes implicated in protein kinase A regulation strongly correlates with erythrocyte sedimentation rate. Other clusters of coregulated, yet suppressed genes in PsA patient blood include molecules involved in T-cell signaling. Finally, differentially expressed genes in PsA fall into diverse functional categories, but many downregulated genes belong to a CD40 signaling pathway. Together, the data suggest that gene expression profiles of PsA patient blood contain candidate novel disease markers and clues to pathogenesis. -
Combinatorial Strategies Using CRISPR/Cas9 for Gene Mutagenesis in Adult Mice
Combinatorial strategies using CRISPR/Cas9 for gene mutagenesis in adult mice Avery C. Hunker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Larry S. Zweifel, Chair Sheri J. Mizumori G. Stanley McKnight Program Authorized to Offer Degree: Pharmacology 2 © Copyright 2019 Avery C. Hunker 3 University of Washington ABSTRACT Combinatorial strategies using CRISPR/Cas9 for gene mutagenesis in adult mice Avery C. Hunker Chair of the Supervisory Committee: Larry Zweifel Department of Pharmacology A major challenge to understanding how genes modulate complex behaviors is the inability to restrict genetic manipulations to defined cell populations or circuits. To circumvent this, we created a simple strategy for limiting gene knockout to specific cell populations using a viral-mediated, conditional CRISPR/SaCas9 system in combination with intersectional genetic strategies. A small single guide RNA (sgRNA) directs Staphylococcus aureus CRISPR-associated protein (SaCas9) to unique sites on DNA in a Cre-dependent manner resulting in double strand breaks and gene mutagenesis in vivo. To validate this technique we targeted nine different genes of diverse function in distinct cell types in mice and performed an array of analyses to confirm gene mutagenesis and subsequent protein loss, including IHC, cell-type specific DNA sequencing, electrophysiology, Western blots, and behavior. We show that these vectors are as efficient as conventional conditional gene knockout and provide a viable alternative to complex genetic crosses. This strategy provides additional benefits of 4 targeting gene mutagenesis to cell types previously difficult to isolate, and the ability to target genes in specific neural projections for gene inactivation. -
Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you. -
Genomic Approach in Idiopathic Intellectual Disability Maria De Fátima E Costa Torres
ESTUDOS DE 8 01 PDPGM 2 CICLO Genomic approach in idiopathic intellectual disability Maria de Fátima e Costa Torres D Autor. Maria de Fátima e Costa Torres D.ICBAS 2018 Genomic approach in idiopathic intellectual disability Genomic approach in idiopathic intellectual disability Maria de Fátima e Costa Torres SEDE ADMINISTRATIVA INSTITUTO DE CIÊNCIAS BIOMÉDICAS ABEL SALAZAR FACULDADE DE MEDICINA MARIA DE FÁTIMA E COSTA TORRES GENOMIC APPROACH IN IDIOPATHIC INTELLECTUAL DISABILITY Tese de Candidatura ao grau de Doutor em Patologia e Genética Molecular, submetida ao Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto Orientadora – Doutora Patrícia Espinheira de Sá Maciel Categoria – Professora Associada Afiliação – Escola de Medicina e Ciências da Saúde da Universidade do Minho Coorientadora – Doutora Maria da Purificação Valenzuela Sampaio Tavares Categoria – Professora Catedrática Afiliação – Faculdade de Medicina Dentária da Universidade do Porto Coorientadora – Doutora Filipa Abreu Gomes de Carvalho Categoria – Professora Auxiliar com Agregação Afiliação – Faculdade de Medicina da Universidade do Porto DECLARAÇÃO Dissertação/Tese Identificação do autor Nome completo _Maria de Fátima e Costa Torres_ N.º de identificação civil _07718822 N.º de estudante __ 198600524___ Email institucional [email protected] OU: [email protected] _ Email alternativo [email protected] _ Tlf/Tlm _918197020_ Ciclo de estudos (Mestrado/Doutoramento) _Patologia e Genética Molecular__ Faculdade/Instituto _Instituto de Ciências -
WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US). -
Pathway Entry Into the T Lymphocyte Developmental Molecular Dissection of Prethymic Progenitor
The Journal of Immunology Molecular Dissection of Prethymic Progenitor Entry into the T Lymphocyte Developmental Pathway1 C. Chace Tydell,2 Elizabeth-Sharon David-Fung,2,3 Jonathan E. Moore, Lee Rowen,4 Tom Taghon,5 and Ellen V. Rothenberg6 Notch signaling activates T lineage differentiation from hemopoietic progenitors, but relatively few regulators that initiate this program have been identified, e.g., GATA3 and T cell factor-1 (TCF-1) (gene name Tcf7). To identify additional regulators of T cell specification, a cDNA library from mouse Pro-T cells was screened for genes that are specifically up-regulated in intrathymic T cell precursors as compared with myeloid progenitors. Over 90 genes of interest were iden- tified, and 35 of 44 tested were confirmed to be more highly expressed in T lineage precursors relative to precursors of B and/or myeloid lineage. To a remarkable extent, however, expression of these T lineage-enriched genes, including zinc finger transcription factor, helicase, and signaling adaptor genes, was also shared by stem cells (Lin؊Sca-1؉Kit؉CD27؊) and multipotent progenitors (Lin؊Sca-1؉Kit؉CD27؉), although down-regulated in other lineages. Thus, a major fraction of these early T lineage genes are a regulatory legacy from stem cells. The few genes sharply up-regulated between multipotent progenitors and Pro-T cell stages included those encoding transcription factors Bcl11b, TCF-1 (Tcf7), and HEBalt, Notch target Deltex1, Deltex3L, Fkbp5, Eva1, and Tmem131. Like GATA3 and Deltex1, Bcl11b, Fkbp5, and Eva1 were dependent on Notch/Delta signaling for induction in fetal liver precursors, but only Bcl11b and HEBalt were up-regulated between the first two stages of intrathymic T cell development (double negative 1 and double negative 2) corresponding to T lineage specification. -
Identification of Pain Genes Contributing to Ciguatoxin-Induced Pain Using Haplotype-Based Computational Genetic Mapping in Mice
Identification of pain genes contributing to ciguatoxin-induced pain using haplotype-based computational genetic mapping in mice by Julian Soh Bachelor of Medicine/Bachelor of Surgery Submitted for the degree of Masters of Philosophy at The University of Queensland in 2018 School of Medicine Abstract Pain is a complex process involving numerous underlying genetic contributions still not completely appreciated, which may explain the high degree of interindividual differences seen with nociception. Chronic pain is responsible for a significant socioeconomic burden on the individual as well as society and is affected by several patient specific aspects including physiological, psychological and environmental factors. Interindividual response to current analgesics is exceedingly inconsistent and the functional basis for the unpredictable efficacies of medications has not been elucidated. It is highly probable that variation seen in nociception is due to undiscovered genetic mechanisms, and specific polymorphisms within genes can be potentially singled out by observing deviations in spontaneous pain responses between animals of differing genotypes using the ciguatoxin marine poison. Ciguatoxin is isolated from the Gambierdiscus toxicus dinoflagellate, a specific type of plankton, which is shown to produce spontaneous pain as well as cold allodynia in a dose dependent manner. The objectives of this thesis are centred on the demonstration of the genotypic influence on pain perception, identifying possible genetic sources implicated in nociception, and validating these potential targets with in vivo methods. In Chapter 2, pain behaviours of sixteen mouse strains with recognised genotypes were quantified after administration of the ciguatoxin, which is known to induce spontaneous flinching and licking pain reactions after intraplantar injection. -
GPR21 KO Mice Demonstrate No Resistance to High Fat Diet Induced
F1000Research 2016, 5:136 Last updated: 16 MAY 2019 RESEARCH NOTE GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance [version 1; peer review: 1 approved, 2 approved with reservations] Jinghong Wang, Zheng Pan, Helene Baribault, Danny Chui, Caroline Gundel, Murielle Véniant Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA First published: 04 Feb 2016, 5:136 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.7822.1) Latest published: 17 Jun 2016, 5:136 ( https://doi.org/10.12688/f1000research.7822.2) Reviewer Status Abstract Invited Reviewers Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen 1 2 3 showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been version 2 report modified. To assess this hypothesis a new Gpr21 KO mouse line using published TALENS technology was generated. Gpr21 gene deletion was confirmed 17 Jun 2016 by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a version 1 normal or high fat diet chow did not maintain their improved metabolic published report report report phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels 04 Feb 2016 may have contributed to the phenotype of the originally designed Gpr21 KO mice. 1 Mary Pelleymounter, National Institute of Keywords Neurological Disorders and Stroke (NINDS), GPCR , Rabgap1 , Diabetes , Drug target , TALENS technology Bethesda, USA 2 Richard Neubig, Michigan State University, East Lansing, USA This article is included in the Preclinical Reproducibility and Robustness gateway. -
GPR21 KO Mice Demonstrate No Resistance to High Fat Diet Induced
F1000Research 2016, 5:136 Last updated: 16 MAY 2019 RESEARCH NOTE GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance [version 2; peer review: 1 approved, 2 approved with reservations] Jinghong Wang, Zheng Pan, Helene Baribault, Danny Chui, Caroline Gundel, Murielle Véniant Department of Metabolic Disorders, Amgen Inc., Thousand Oaks, CA, USA First published: 04 Feb 2016, 5:136 ( Open Peer Review v2 https://doi.org/10.12688/f1000research.7822.1) Latest published: 17 Jun 2016, 5:136 ( https://doi.org/10.12688/f1000research.7822.2) Reviewer Status Abstract Invited Reviewers Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen 1 2 3 showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been version 2 report modified. To assess this hypothesis a new Gpr21 KO mouse line using published TALENS technology was generated. Gpr21 gene deletion was confirmed 17 Jun 2016 by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a version 1 normal or high fat diet chow did not maintain their improved metabolic published report report report phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels 04 Feb 2016 may have contributed to the phenotype of the originally designed Gpr21 KO mice. 1 Mary Pelleymounter, National Institute of Keywords Neurological Disorders and Stroke (NINDS), GPCR , Rabgap1 , Diabetes , Drug target , TALENS technology Bethesda, USA 2 Richard Neubig, Michigan State University, East Lansing, USA This article is included in the Preclinical Reproducibility and Robustness gateway.