Deciphering Pre-Leukaemic Dysregulation Caused by Mutant C/Ebpα at the Level of the Single Cell

Total Page:16

File Type:pdf, Size:1020Kb

Deciphering Pre-Leukaemic Dysregulation Caused by Mutant C/Ebpα at the Level of the Single Cell Deciphering pre-leukaemic dysregulation caused by mutant C/EBPa at the level of the single cell Moosa Rashid Qureshi Department of Haematology University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy Queens’ College August 2019 DeClaration This thesis is the result of my own work and inCludes nothing whiCh is the outCome of work done in Collaboration exCept as deClared in the Acknowledgments and speCified in the text. It is not substantially the same as any that I have submitted, or, is being ConCurrently submitted for a degree or diploma or other qualifiCation at the University of Cambridge or any other University or similar institution exCept as deClared in the Acknowledgments and speCified in the text. I further state that no substantial part of my thesis has already been submitted, or, is being ConCurrently submitted for any suCh degree, diploma or other qualification at the University of Cambridge or any other University or similar institution exCept as deClared in the Acknowledgments and speCified in the text. It does not exCeed the prescribed word limit for the relevant Degree Committee Moosa Qureshi August 2019 I AbstraCt DeCiphering pre-leukaemic dysregulation Caused by mutant C/EBPa at the level of the single cell Moosa Rashid Qureshi C/EBPa is an ideal Candidate to explore pre-leukaemiC dysregulation of transCriptional networks beCause it is a signifiCant player in normal myelopoiesis, it interaCts with other transCription faCtors (TFs) in lineage speCification, and the CEBPA gene has been identified as an early mutation in acute myeloid leukaemia (AML). N321D is a mutation affeCting the leuCine zipper domain of C/EBPa whiCh has previously generated an aggressive AML phenotype in a mouse model. The first objeCtive of my thesis was to ConstruCt a novel in vitro cellular model to reCapitulate pre-leukaemic Changes assoCiated with the CEBPA N321D mutation. The conditionally immortalised murine Hoxb8-FL Cell line can differentiate into relatively homogenous populations of functional myeloid, lymphoid and dendritiC Cells in appropriate Cell Culture conditions. These Cells were transduCed with retroviral veCtors whiCh expressed either no transgene or “Empty VeCtor” (EV), the CEBPA wildtype (WT) or N321D mutation. CEBPA N321D-transduCed Cells had immature morphologiCal appearanCe in Flt3L differentiation media, proliferated indefinitely, and were CharaCterised by a plasmacytoid dendritiC Cell (pDC)-like immunophenotype. These Cells were Capable of long-term engraftment in a mouse model but did not reCapitulate leukaemia for several months after transplantation. The seCond objeCtive was to CharaCterise the transCriptional deregulation associated with the phenotypes demonstrated by EV, CEBPA WT and N321D-expressing Cells in the presenCe of Flt3L. Single cell RNA-seq (scRNA-seq) confirmed phenotypic observations that CEBPA N321D- transduCed Cells had a pDC preCursor-like gene expression signature when plaCed in Flt3L conditions of differentiation. Single Cell analysis also identified transCriptional heterogeneity in the CEBPA N321D Compartment at single Cell resolution. II The third objeCtive was to use ChIP-seq to investigate the effeCt of the N321D mutation on C/EBPa’s TF binding profile, and Correlate this with sCRNA-seq data to identify a set of candidate genes (NOTCH2, JAK2, SIRPA, FOS, and others) where gene expression Changes were assoCiated with direCt binding events by the mutant TF. In addition to characterising the transCriptional effeCts of the CEBPA mutation, a fourth objeCtive was to update and expand the Göttgens group’s CODEX database of TF-binding and histone modifiCation data for human blood Cells, increasing annotation of the genome to 14.83%. This online database now provides signifiCant Coverage of the non-coding portion of the genome, and is therefore potentially of interest to the wider haematology researCh community. III Acknowledgements Firstly, I would like to thank my supervisor Bertie Göttgens for his invaluable mentorship and support during my PhD, partiCularly for providing vision at those definitive points when I could not myself see a Clear path forwards. It has been a real privilege to work under his supervision. I am indebted to everyone in the Göttgens lab for providing a fantastiC environment of academiC endeavour, but in partiCular I would like to thank Fernando Calero-Nieto for providing me with praCtiCal help and adviCe throughout my sCientifiC apprenticeship, and for teaChing me the importanCe of sCientifiC rigour. In addition, I would like to thank Sarah Kinston and Iwo KuCinski for their praCtiCal help with Cloning and single Cell work, and the Flow Cytometry Team at the CIMR for helping me to develop a workable flow panel and for Cell sorting. From the Göttgens bioinformatiCs team, I would like to thank Evangelia Diamanti, Fiona Hamey, Xiaonan Wang, and Wajid Jawaid for helping me with R-code, and espeCially Rebecca Hannah who helped enormously with proCessing my ChIP-seq data and my work on the CODEX database. It would be greatly remiss of me not to aCknowledge the outstanding administrative support I reCeived from Martin Dawes. Regarding Collaboration, I would like to thank the Huntly group and in partiCular George Giotopoulos for his help and expertise with in vivo work. Thirdly, I thank the Cambridge CanCer Centre for seleCting me for this PhD, and CanCer Research UK and the Addenbrooke’s Charitable Trust for supporting my researCh. In addition, I would like to thank the Charles Slater Fund and Queens’ College for funding me to present my work at international ConferenCes. I would also like to thank my father who Continues to inspire me, my mother whose memory sustains me, and all my extended family. Finally, I express my gratitude to Sara Khalil Ebrahim Ali for providing love, intelleCtual stimulation, asking me questions whiCh I Can never answer, and for simply putting up with me. IV Abbreviations AML ACute Myeloid Leukaemia APC Antigen Presenting Cell APML ACute PromyeloCytiC Leukaemia ASAP Automated Single-cell Analysis Pipeline BMDC Bone Marrow derived DendritiC Cell BMS Bone Marrow Stroma BR BasiC Region bZIP basiC-region leuCine Zipper C/EBP CCAAT/EnhanCer Binding Protein cDC Conventional DendritiC Cell cDNA Complementary DNA CDP Common DendritiC Cell Progenitor CHIP Clonal Haematopoiesis of Indeterminate Potential ChIP Chromatin ImmunopreCipitation ChIP-seq Chromatin ImmunopreCipitation SequenCing CLP Common Lymphoid Progenitor CMGA Complex MoleCular GenetiC Abnormalities CML ChroniC Myeloid Leukaemia CMP Common Myeloid Progenitor CRISPR Clustered Regularly InterspaCed Short PalindromiC Repeats CyTOF Cytometry by Time Of Flight DC DendritiC Cell DGE Differential Gene Expression dm double mutated DMEM DulbeCCo's Modified Eagle's Medium DMSO Dimethyl Sulfoxide DNA DeoxyribonuCleiC ACid dNTP DeoxynuCleotide Triphosphates dT Deoxythymine EDTA EthylenediaminetetraaCetiC ACid ENCODE ENCyClopaedia Of DNA Elements ERCC External RNA Controls Consortium V EV Empty VeCtor FAB FrenCh-AmeriCan-British (AML ClassifiCation System) FACS FluoresCenCe-Activated Cell Sorting FBS Foetal Bovine Serum G-CSF GranuloCyte-Colony Stimulating FaCtor GEO Gene Expression Omnibus GFP Green Fluorescent Protein GM-CSF GranuloCyte MaCrophage-Colony Stimulating Factor GMP GranuloCyte MaCrophage Progenitor GO Gene Ontology GRN Gene Regulatory Network GWAS Genome-wide AssoCiation Study HEPES 4-(2-Hydroxyethyl)-1-PiperazineethanesulfoniC ACid HPC-7 Haematopoietic precursor cell-7 HSC HaematopoietiC Stem Cell HSPC Haematopoietic Stem and Progenitor Cells IFN Interferon IL-3 Interleukin 3 ImmGen ImmunologiCal Genome IRES Internal Ribosome Entry Site LIC Leukaemia Initiating Cell LMPP Lymphoid-Primed Multipotent Progenitor LSK Lin- Sca-1+ C-Kit+ LT-HSC Long-Term HSC LZ LeuCine Zipper MACS Model-based Analysis of ChIP-seq mChrom1 mouse Chromosome 1 M-CSF MaCrophage-Colony Stimulating FaCtor MDP MonoCyte/MaCrophage DendritiC Cell Progenitor MDS MyelodysplastiC Syndrome MEP MegakaryoCyte ErythroCyte Progenitor MHC Major HistoCompatibility Complex MLL Mixed Lineage Leukaemia MLP Multi-Lymphoid Progenitor MPP Multipotent Progenitor VI mRNA messenger RNA NOD SCID Non-DiabetiC with Severe Combined ImmunodefiCienCy Disease NGS Next Generation SequenCing NSG NOD SCID Gamma PBS Phosphate Buffered Saline PCA PrinCipal Component Analysis PCR Polymerase Chain ReaCtion pDC PlasmaCytoid DendritiC Cell PBS Phosphate Buffered Saline qPCR Quantitative PCR RNA RibonuCleic aCid RPMI Roswell Park Memorial Institute Medium sc single Cell SCF Stem Cell Factor Scl Stem Cell leukaemia SD SequenCing Depth shRNA short hairpin RNA smFISH single-moleCule FluoresCenCe In Situ Hybridisation SNP Single NuCleotide Polymorphism SNR Signal-to-Noise Ratio ST-HSC Short-term HSC TAD TransaCtivation Domain TAE Tris/ACetiC ACid/EDTA Buffer TBE Tris/Borate/EDTA Buffer TBS Tris Buffered Saline TE Tris/EDTA TF TransCription FaCtor t-SNE t-Distributed StoChastiC Neighbour Embedding TSS TransCription Start Site UCSC University of California Santa Cruz (Genome Browser) UMI Unique MoleCular Identifier URE Upstream Regulatory Element WGS Whole Genome SCreening WT Wildtype VII VIII Contents Declaration ........................................................................................................................I Abstract ........................................................................................................................... II Acknowledgements .......................................................................................................
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Downloaded from USCS Tables (
    bioRxiv preprint doi: https://doi.org/10.1101/318329; this version posted February 4, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The selection arena in early human blastocysts resolves the pluripotent inner cell mass Manvendra Singh1, Thomas J. Widmann2, Vikas Bansal7, Jose L. Cortes2, Gerald G. Schumann3, Stephanie Wunderlich4, Ulrich Martin4, Marta Garcia-Canadas2, Jose L. Garcia- Perez2,5*, Laurence D. Hurst6*#, Zsuzsanna Izsvák1* 1 Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Robert-Rössle- Strasse 10, 13125 Berlin, Germany. 2 GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, 18016 Granada, Spain. 3 Paul-Ehrlich-Institute, Division of Medical Biotechnology, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany. 4Center for Regenerative Medicine Hannover Medical School (MHH) Carl-Neuberg-Str.1, Building J11, D-30625 Hannover, Germany 5Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, United Kingdom 6 The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, Somerset, UK, BA2 7AY. 7 Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany. *Corresponding authors *Zsuzsanna Izsvák Max Delbrück Center for Molecular Medicine Robert Rössle Strasse 10, 13092 Berlin, Germany Telefon: +49 030-9406-3510 Fax: +49 030-9406-2547 email: [email protected] http://www.mdcberlin.de/en/research/research_teams/mobile_dna/index.html and *Laurence D.
    [Show full text]
  • SLC46A3 As a Potential Predictive Biomarker for Antibody–Drug
    Published OnlineFirst August 21, 2018; DOI: 10.1158/1078-0432.CCR-18-1300 Cancer Therapy: Preclinical Clinical Cancer Research SLC46A3 as a Potential Predictive Biomarker for Antibody–Drug Conjugates Bearing Noncleavable Linked Maytansinoid and Pyrrolobenzodiazepine Warheads Krista Kinneer1, John Meekin1, Arnaud C. Tiberghien2, Yu-Tzu Tai3, Sandrina Phipps4, Christine Mione Kiefer4, Marlon C. Rebelatto5, Nazzareno Dimasi4, Alyssa Moriarty6, Kyriakos P. Papadopoulos6, Sriram Sridhar5, Stephen J. Gregson2, Michael J. Wick6, Luke Masterson2, Kenneth C. Anderson3, Ronald Herbst1, Philip W. Howard2, and David A. Tice1 Abstract Purpose: Antibody–drug conjugates (ADC) utilizing non- also examined in patient-derived xenograft and in vitro cleavable linker drugs have been approved for clinical use, and models of acquired T-DM1 resistance and multiple myeloma several are in development targeting solid and hematologic bone marrow samples by RT-PCR. malignancies including multiple myeloma. Currently, there Results: Loss of SLC46A3 expressionwasfoundtobea are no reliable biomarkers of activity for these ADCs other than mechanismofinnateandacquiredresistancetoADCs presence of the targeted antigen. We observed that certain cell bearing DM1 and SG3376. Sensitivity was restored in refrac- lines are innately resistant to such ADCs, and sought to tory lines upon introduction of SLC46A3, suggesting that uncover the underlying mechanism of resistance. expression of SLC46A3 maybemorepredictiveofactivity Experimental Design: The expression of 43 lysosomal than target antigen levels alone. Interrogation of primary membrane target genes was evaluated in cell lines resistant multiple myeloma samples indicated a range of SLC46A3 to ADCs bearing the noncleavable linker, pyrrolobenzodiaze- expression, including samples with undetectable levels like pine payload SG3376, in vitro. The functional relevance of multiple myeloma cell lines resistant to BCMA-targeting SLC46A3, a lysosomal transporter of noncleavable ADC DM1andSG3376ADCs.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Dysregulation at Multiple Points of the Kynurenine Pathway Is a Ubiquitous Feature of Renal Cancer: Implications for Tumour Immune Evasion
    This is a repository copy of Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/158462/ Version: Accepted Version Article: Hornigold, N, Dunn, KR, Craven, RA et al. (22 more authors) (2020) Dysregulation at multiple points of the kynurenine pathway is a ubiquitous feature of renal cancer: implications for tumour immune evasion. British Journal of Cancer. ISSN 0007-0920 https://doi.org/10.1038/s41416-020-0874-y © The Author(s), under exclusive licence to Cancer Research UK 2020. This is an author produced version of an article published in British Journal of Cancer. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Dysregulation at multiple points
    [Show full text]
  • Epistasis-Driven Identification of SLC25A51 As a Regulator of Human
    ARTICLE https://doi.org/10.1038/s41467-020-19871-x OPEN Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import Enrico Girardi 1, Gennaro Agrimi 2, Ulrich Goldmann 1, Giuseppe Fiume1, Sabrina Lindinger1, Vitaly Sedlyarov1, Ismet Srndic1, Bettina Gürtl1, Benedikt Agerer 1, Felix Kartnig1, Pasquale Scarcia 2, Maria Antonietta Di Noia2, Eva Liñeiro1, Manuele Rebsamen1, Tabea Wiedmer 1, Andreas Bergthaler1, ✉ Luigi Palmieri2,3 & Giulio Superti-Furga 1,4 1234567890():,; About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction- driven functional gene deorphanization. 1 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. 2 Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics,
    [Show full text]
  • Integrated Analysis of Transcriptomic and Proteomic Analyses Reveals Different Metabolic Patterns in the Livers of Tibetan and Yorkshire Pigs
    Open Access Anim Biosci Vol. 34, No. 5:922-930 May 2021 https://doi.org/10.5713/ajas.20.0342 pISSN 2765-0189 eISSN 2765-0235 Integrated analysis of transcriptomic and proteomic analyses reveals different metabolic patterns in the livers of Tibetan and Yorkshire pigs Mengqi Duan1,a, Zhenmei Wang1,a, Xinying Guo1, Kejun Wang2, Siyuan Liu1, Bo Zhang3,*, and Peng Shang1,* * Corresponding Authors: Objective: Tibetan pigs, predominantly originating from the Tibetan Plateau, have been Bo Zhang Tel: +86-010-62734852, subjected to long-term natural selection in an extreme environment. To characterize the Fax: +86-010-62734852, metabolic adaptations to hypoxic conditions, transcriptomic and proteomic expression E-mail: [email protected] patterns in the livers of Tibetan and Yorkshire pigs were compared. Peng Shang Tel: +86-0894-5822924, Methods: RNA and protein were extracted from liver tissue of Tibetan and Yorkshire pigs Fax: +86-0894-5822924, (n = 3, each). Differentially expressed genes and proteins were subjected to gene ontology E-mail: [email protected] and Kyoto encyclopedia of genes and genomes functional enrichment analyses. 1 College of Animal Science, Tibet Agriculture Results: In the RNA-Seq and isobaric tags for relative and absolute quantitation analyses, a and Animal Husbandry University, Linzhi, total of 18,791 genes and 3,390 proteins were detected and compared. Of these, 273 and Xizang 86000, China 257 differentially expressed genes and proteins were identified. Evidence from functional 2 College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, enrichment analysis showed that many genes were involved in metabolic processes. The Zhengzhou, Henan 450046, China combined transcriptomic and proteomic analyses revealed that small molecular biosynthesis, 3 National Engineering Laboratory for Animal metabolic processes, and organic hydroxyl compound metabolic processes were the major Breeding/Beijing Key Laboratory for Animal processes operating differently in the two breeds.
    [Show full text]
  • Molecular Bases of Drug Resistance in Hepatocellular Carcinoma
    cancers Review Molecular Bases of Drug Resistance in Hepatocellular Carcinoma Jose J.G. Marin 1,2,* , Rocio I.R. Macias 1,2 , Maria J. Monte 1,2 , Marta R. Romero 1,2, Maitane Asensio 1, Anabel Sanchez-Martin 1, Candela Cives-Losada 1, Alvaro G. Temprano 1, Ricardo Espinosa-Escudero 1, Maria Reviejo 1, Laura H. Bohorquez 1 and Oscar Briz 1,2,* 1 Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; [email protected] (R.I.R.M.); [email protected] (M.J.M.); [email protected] (M.R.R.); [email protected] (M.A.); [email protected] (A.S.-M.); [email protected] (C.C.-L.); [email protected] (A.G.T.); [email protected] (R.E.-E.); [email protected] (M.R.); [email protected] (L.H.B.) 2 Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain * Correspondence: [email protected] (J.J.G.M.); [email protected] (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.) Received: 4 June 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients.
    [Show full text]
  • Anti-SLC46A3 Code No
    BMP082 For Research Use Only. Page 1 of 3 Not for use in diagnostic procedures. POLYCLONAL ANTIBODY Anti-SLC46A3 Code No. Quantity Form BMP082 100 L Affinity Purified BACKGROUND: Folate, a member of the vitamin B SPECIES CROSS REACTIVITY: complex, is obtained solely from dietary sources. It is taken Species Human Mouse Rat up from epithelial cells into tissues such as the kidney, liver, and intestine via folate transport systems. Members of cerebellum, Tissues Not Tested Not Tested solute carrier family 46 (SLC46) are folate transporters. testis Several mutations in the SLC46A1 gene are found in Reactivity on IHC + patients with hereditary folate malabsorption. SLC46A2, also known as TSCOT/Ly110, is reported to be a thymic epithelial marker in mice. SLC46A3 is a known folate REFERENCES: transporter, but its function and substrate are unknown. 1) Lasry, I., et al., Blood 112, 2055-2061 (2008) 2) Zhao, R., et al., Blood 110, 1147-1152 (2007) SOURCE: This antibody was affinity purified from rabbit 3) Qiu, A., et al., Cell 127, 917-928 (2006) serum. The rabbit was immunized with a synthetic peptide 4) Geller, J., et al., Medicine 81, 51-68 (2002) derived from human SLC46A3. FORMULATION: 100 L volume of PBS containing cerebellum 50% glycerol, pH 7.2. No preservative is contained. STORAGE: This antibody solution is stable for one year from the date of purchase when stored at -20oC. REACTIVITY: This antibody can be used to stain endogenous antigen in paraffin embedded human tissues including the cerebellum and testis by Immunohistochemistry. The reactivity has been confirmed by Immunocytochemistry and intracellular Flow cytometry to detect the full length of human SLC46A3 transiently expressed in HEK 293T cells.
    [Show full text]
  • Development and Characterization of the SLC46A3 Knockout Mouse Line
    Development and Characterization of the SLC46A3 Knockout Mouse Line Summary (1024-character limit) The National Cancer Institute (NCI) seeks licensees for an SLC46A3 knockout mouse line. SLC46A3 is a solute carrier of the Major Facilitator Superfamily (MFS) and is thought to have roles in multiple diseases including nonalcoholic fatty liver disease, liver cancer and obesity. NIH Reference Number E-152-2021 Product Type Research Tools Keywords SLC46A3, Solute Carrier Family, Major Facilitator Superfamily, MFS, Nonalcoholic fatty liver disease, Obesity, Liver Cancer, Hepatocellular Carcinoma, Knockout Mouse, 2,3,7,8-tetracholodibenzo-p- dioxin, TCDD, Gonzalez Collaboration Opportunity This invention is available for licensing. Contact Michael Salgaller, Ph.D. NCI - National Cancer Institute 240-276-5476 [email protected] Description of Technology Nonalcoholic fatty liver disease is caused by several factors including 2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD), an environmental contaminant. TCDD causes lipid accumulation in humans by inducing the Solute Carrier Family 46 Member 3 (SLC46A3) gene expression. To effectively study TCDD- mediated lipid accumulation, research tools such as SLC46A3 knockout cells and animal models are required. Researchers at the National Cancer Institute (NCI) have developed an SLC46A3 knockout mouse line and demonstrated that TCDD-induced hepatic triglyceride accumulation was significantly reduced in the knockout mice compared to the wild type mice. This reduction in triglyceride accumulation was more pronounced when the mice were fed a high fat diet. The SLC46A3 knockout mouse line is therefore an effective tool to study TCDD-induced lipid accumulation, liver toxicity and nonalcoholic fatty liver NCI Technology Transfer Center https://techtransfer.cancer.gov/pdf/e-152-2021.pd f disease.
    [Show full text]