Synchronizing Time with Dcf77 and Msf60
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Diocese of Harrisburg Geography of Pennsylvania
7/2006 DIOCESE OF HARRISBURG GEOGRAPHY OF PENNSYLVANIA Red Italics – Reference to Diocesan History Outcome: The student knows and understands the geography of Pennsylvania. Assessment: The student will apply the geographic themes of location, place and region to Pennsylvania today. Skills/Objectives Suggested Teaching/Learning Strategies Suggested Assessment Strategies The student will be able to: 1a. Using student desk maps, locate and highlight the 1a. On a blank map of the U.S., outline the state of state, trace rivers and their tributaries and circle Pennsylvania, label the capital, hometown and two 1. Locate and identify the state of Pennsylvania, its major cities. largest cities. capital, major cities and his hometown. On a blank map of the U.S. outline the state of 1b. Using the globe, determine the latitude and longitude Pennsylvania; within the state of Pennsylvania, outline of the state. the Diocese of Harrisburg. Label the city where the cathedral is located. 1c. Using a Pennsylvania highway map, design a road tour visiting major Pennsylvania cities. 1b. Using the desk map, identify the latitude line closest Using a Pennsylvania highway map with the counties to the hometown and two other towns of the same within the Diocese of Harrisburg marked, do the parallel of latitude. Identify the longitude nearest the following: first, in each county, identify a city or town state capital and two other towns on the same with a Catholic church; then design a road tour visiting meridian of longitude. each of these cities or towns. Using a desk map, place marks on the most-western, the most-northern, and the most-eastern tips of the Diocese 1d. -
Reception of Low Frequency Time Signals
Reprinted from I-This reDort show: the Dossibilitks of clock svnchronization using time signals I 9 transmitted at low frequencies. The study was madr by obsirvins pulses Vol. 6, NO. 9, pp 13-21 emitted by HBC (75 kHr) in Switxerland and by WWVB (60 kHr) in tha United States. (September 1968), The results show that the low frequencies are preferable to the very low frequencies. Measurementi show that by carefully selecting a point on the decay curve of the pulse it is possible at distances from 100 to 1000 kilo- meters to obtain time measurements with an accuracy of +40 microseconds. A comparison of the theoretical and experimental reiulb permib the study of propagation conditions and, further, shows the drsirability of transmitting I seconds pulses with fixed envelope shape. RECEPTION OF LOW FREQUENCY TIME SIGNALS DAVID H. ANDREWS P. E., Electronics Consultant* C. CHASLAIN, J. DePRlNS University of Brussels, Brussels, Belgium 1. INTRODUCTION parisons of atomic clocks, it does not suffice for clock For several years the phases of VLF and LF carriers synchronization (epoch setting). Presently, the most of standard frequency transmitters have been monitored accurate technique requires carrying portable atomic to compare atomic clock~.~,*,3 clocks between the laboratories to be synchronized. No matter what the accuracies of the various clocks may be, The 24-hour phase stability is excellent and allows periodic synchronization must be provided. Actually frequency calibrations to be made with an accuracy ap- the observed frequency deviation of 3 x 1o-l2 between proaching 1 x 10-11. It is well known that over a 24- cesium controlled oscillators amounts to a timing error hour period diurnal effects occur due to propagation of about 100T microseconds, where T, given in years, variations. -
AN 307: Altera Design Flow for Xilinx Users Supersedes Information Published in Previous Versions
Altera Design Flow for Xilinx Users June 2005, ver. 5.0 Application Note 307 Introduction Designing for Altera® Programmable Logic Devices (PLDs) is very similar, both in concept and in practice, to designing for Xilinx PLDs. In most cases, you can simply import your register transfer level (RTL) into Altera’s Quartus® II software and begin compiling your design to the target device. This document will demonstrate the similar flows between the Altera Quartus II software and the Xilinx ISE software. For designs, which the designer has included Xilinx CORE generator modules or instantiated primitives, the bulk of this document guides the designer in design conversion considerations. Who Should Read This Document The first and third sections of this application note are designed for engineers who are familiar with the Xilinx ISE software and are using Altera’s Quartus II software. This first section describes the possible design flows available with the Altera Quartus II software and demonstrates how similar they are to the Xilinx ISE flows. The third section shows you how to convert your ISE constraints into Quartus II constraints. f For more information on setting up your design in the Quartus II software, refer to the Altera Quick Start Guide For Quartus II Software. The second section of this application note is designed for engineers whose design code contains Xilinx CORE generator modules or instantiated primitives. The second section provides comprehensive information on how to migrate a design targeted at a Xilinx device to one that is compatible with an Altera device. If your design contains pure behavioral coding, you can skip the second section entirely. -
Table of Contents
2012 Sediment Quality Cascade Pole Site Olympia, Washington January 13, 2014 Prepared for Port of Olympia 915 Washington Street NE 130 2nd Avenue South Edmonds, WA 98020 (425) 778-0907 TABLE OF CONTENTS Page 1.0 INTRODUCTION 1-1 1.1 BACKGROUND 1-1 1.1.1 Cleanup Action 1-1 1.1.2 Previous Performance Monitoring 1-2 1.1.2.1 Post-Construction Sediment Monitoring 1-2 1.1.2.2 Prior Performance Monitoring Event 1-2 1.2 REPORT ORGANIZATION 1-3 2.0 SEDIMENT MONITORING APPROACH 2-1 2.1 SAMPLE COLLECTION 2-2 2.1.1 Subsurface Sediment Sampling Procedures 2-2 2.1.2 Surface Sediment Sampling Procedures 2-3 2.2 SAMPLE ANALYSIS 2-3 3.0 MONITORING RESULTS 3-1 3.1 SEDIMENT PHYSICAL CHARACTERISTICS 3-1 3.2 ANALYTICAL RESULTS 3-1 3.2.1 Interior Backfill and Subsurface Sediment Results 3-1 3.2.2 Surface Sediment Results 3-2 4.0 EVALUATION OF CLEANUP EFFECTIVENESS 4-1 5.0 USE OF THIS REPORT 5-1 6.0 REFERENCES 6-1 1/10/14 P:\021\039\FileRm\R\2012 Sed Monitoring Rpt\2012 Sed Quality Rpt.docx LANDAU ASSOCIATES ii FIGURES Figure Title 1 Vicinity Map 2 2012 Sediment Quality - Phase I Sample Locations 3 2012 Sediment Quality - Phase II Surface Sample Locations 4 2012 Sediment Quality - Phase III Surface Sample Locations TABLES Table Title 1 Sample Locations Coordinates 2 Interior Backfill and Subsurface Sediment Results 3 Surface Sediment Results APPENDICES Appendix Title A Sediment Exploration Logs B Analytical Laboratory Reports C Historical Sediment Analytical Results 1/10/14 P:\021\039\FileRm\R\2012 Sed Monitoring Rpt\2012 Sed Quality Rpt.docx LANDAU ASSOCIATES iii LIST OF ABBREVIATIONS AND ACRONYMS ARI Analytical Resources, Incorporated BGS Below Ground Surface CAP Cleanup Action Plan cPAH Carcinogenic Polycyclic Aromatic Hydrocarbons CSL Cleanup Screening Level COPC Chemical of Potential Concern Ecology Washington State Department of Ecology GPS Global Positioning System LPAH Low Molecular Weight PAHs MBL Multiple Benefits Line MSS Marine Sampling Systems, Inc. -
TX517EVM Users Manual . (Rev. B)
TX517 Dual Channel, 17-Level With RTZ, Integrated Ultrasound Transmitter User's Guide Literature Number: SLOU317B August 2011–Revised December 2011 2 SLOU317B–August 2011–Revised December 2011 Submit Documentation Feedback Copyright © 2011, Texas Instruments Incorporated Contents 1 Default Configuration .......................................................................................................... 9 2 Buttons ............................................................................................................................ 10 3 SYNC Trigger .................................................................................................................... 11 4 Power up TX517 ................................................................................................................ 12 5 Power Supplies for Output Waveform .................................................................................. 13 5.1 Input/Output Pattern ................................................................................................... 14 6 Board Configuration .......................................................................................................... 20 7 EVM Schematics ............................................................................................................... 21 8 Bill of Materials ................................................................................................................. 28 9 PCB Layouts .................................................................................................................... -
Bulletin of the DANISH SHORT WAVE CLUB INTERNATIONAL for Short Wave Listeners and Dxers No 9 December 2009 Volume 52
Bulletin of the DANISH SHORT WAVE CLUB INTERNATIONAL for short wave listeners and DXers No 9 December 2009 Volume 52 Our German member, no. 3700 Dieter Sommer The equipment is Yaesu FT840, Sangean ATS-909 modifed, a T2FD antenna and a GP horizontal antenna. Dieter writes that he prefers Utility, Pirate and BC DX-ing Dieter has more than 200 countries verified He is 56 years old and have been DX-ing in about 43 years Editorial Staff: ISSN 0106-3731 Danish Short Wave Club International Shortwave Tips: Tavleager 31, DK-2670 Greve, Denmark Klaus-Dieter Scholz, Home page: http://www.dswci.org Postfach 45 02 34, D-99052 Erfurt, Germany Board: Tel.: +49 (0)361 –- 21 68 96 5, Fax: +49(0) 69 - 13 30 63 72 07 8 Chairman and representative to the EDXC: Web::http://www.dswci-sw-logs.dxer.info/yourlogs.htm Anker Petersen, E-mail: [email protected] Udbyvej 11, DK-2740 Skovlunde, Denmark Utility Shack: E-mail: [email protected] Tor-Henrik Ekblom, Treasurer: Solvindsgatan 7 A 20, FI-00990 Helsingfors, Finland Bent Nielsen, E-mail: [email protected] Egekrogen 14, DK-3500 Vaerloese, Denmark World News: E-mail: [email protected] Sakthi Jaisakthivel, Bank: Danske Bank, 59,Annai Sathya Nagar, Arumbakkam, Chennai-600106,India.: Holmens Kanal 2-12, DK 1092 Copenhagen K. E-mail:[email protected] BIC: DABADKKK. Account: DK 44 3000 4001 528459. QSL Corner: Danish members use: Reg. 3001- account no. 4001528459 Andreas Schmid, The treasurer accepts bank notes! Lerchenweg 4, D-97717 Euerdorf, Germany Editor-in-Chief and Distribution: E-mail: [email protected] Kaj Bredahl Jørgensen, Tel. -
NIST Time and Frequency Services (NIST Special Publication 432)
Time & Freq Sp Publication A 2/13/02 5:24 PM Page 1 NIST Special Publication 432, 2002 Edition NIST Time and Frequency Services Michael A. Lombardi Time & Freq Sp Publication A 2/13/02 5:24 PM Page 2 Time & Freq Sp Publication A 4/22/03 1:32 PM Page 3 NIST Special Publication 432 (Minor text revisions made in April 2003) NIST Time and Frequency Services Michael A. Lombardi Time and Frequency Division Physics Laboratory (Supersedes NIST Special Publication 432, dated June 1991) January 2002 U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary TECHNOLOGY ADMINISTRATION Phillip J. Bond, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arden L. Bement, Jr., Director Time & Freq Sp Publication A 2/13/02 5:24 PM Page 4 Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY SPECIAL PUBLICATION 432 (SUPERSEDES NIST SPECIAL PUBLICATION 432, DATED JUNE 1991) NATL. INST.STAND.TECHNOL. SPEC. PUBL. 432, 76 PAGES (JANUARY 2002) CODEN: NSPUE2 U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 2002 For sale by the Superintendent of Documents, U.S. Government Printing Office Website: bookstore.gpo.gov Phone: (202) 512-1800 Fax: (202) -
Identification of Novel HPFH-Like Mutations by CRISPR Base Editing That Elevates the Expression of Fetal Hemoglobin
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.30.178715; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of novel HPFH-like mutations by CRISPR base editing that elevates the expression of fetal hemoglobin Nithin Sam Ravi1,3, Beeke Wienert4,8,9, Stacia K. Wyman4, Jonathan Vu4, Aswin Anand Pai2, Poonkuzhali Balasubramanian2, Yukio Nakamura7, Ryo Kurita10, Srujan Marepally1, Saravanabhavan Thangavel1, Shaji R. Velayudhan1,2, Alok Srivastava1,2, Mark A. DeWitt 4,5, Jacob E. Corn4,6, Kumarasamypet M. Mohankumar1* 1. Centre for Stem Cell Research (a unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore-632002, Tamil Nadu, India. 2. Department of Haematology, Christian Medical College Hospital, IDA Scudder Rd, Vellore-632002, Tamil Nadu, India. 3. Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram - 695 011, Kerala, India. 4. Innovative Genomics Institute, University of California Berkeley, Berkeley, California- 94704, USA. 5. Department of Microbiology, Immunology, and Molecular Genetics, University of California - Los Angeles, Los Angeles, California - 90095, USA. 6. Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern- Weg, Zurich - 8092, Switzerland. 7. Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan. 8. Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California -94158, USA 9. School of Biotechnology and Biomolecular Sciences, University of New South Wales - 2052, Sydney, Australia. 10. Research and Development Department Central Blood Institute Blood Service Headquarters Japanese Red Cross Society, 2-1-67 Tatsumi, Tokyo, 135-8521, Japan *Corresponding Author: Dr. -
Tigersharc Embedded Processor ADSP-TS101S
TigerSHARC Embedded Processor ADSP-TS101S FEATURES BENEFITS 300 MHz, 3.3 ns instruction cycle rate Provides high performance Static Superscalar DSP opera- 6M bits of internal—on-chip—SRAM memory tions, optimized for telecommunications infrastructure 19 mm × 19 mm (484-ball) CSP-BGA or 27 mm × 27 mm and other large, demanding multiprocessor DSP (625-ball) PBGA package applications Dual computation blocks—each containing an ALU, a multi- Performs exceptionally well on DSP algorithm and I/O bench- plier, a shifter, and a register file marks (see benchmarks in Table 1 and Table 2) Dual integer ALUs, providing data addressing and pointer Supports low overhead DMA transfers between internal manipulation memory, external memory, memory-mapped peripherals, Integrated I/O includes 14-channel DMA controller, external link ports, other DSPs (multiprocessor), and host port, 4 link ports, SDRAM controller, programmable flag processors pins, 2 timers, and timer expired pin for system integration Eases DSP programming through extremely flexible instruc- 1149.1 IEEE compliant JTAG test access port for on-chip tion set and high-level language-friendly DSP architecture emulation Enables scalable multiprocessing systems with low commu- On-chip arbitration for glueless multiprocessing with up to nications overhead 8 TigerSHARC processors on a bus COMPUTATIONAL BLOCKS PROGRAM SEQUENCER DATA ADDRESS GENERATION INTERNAL MEMORY 6 MEMORY MEMORY MEMORY JTAG PORT SHIFTER PC BTB IRQ INTEGER 32 32 INTEGER M0 M1 M2 JALU KALU ADDR 64K × 32 64K × 32 64K × 32 SDRAM CONTROLLER -
Radio Navigational Aids
RADIO NAVIGATIONAL AIDS Publication No. 117 2014 Edition Prepared and published by the NATIONAL GEOSPATIAL-INTELLIGENCE AGENCY Springfield, VA © COPYRIGHT 2014 BY THE UNITED STATES GOVERNMENT NO COPYRIGHT CLAIMED UNDER TITLE 17 U.S.C. WARNING ON USE OF FLOATING AIDS TO NAVIGATION TO FIX A NAVIGATIONAL POSITION The aids to navigation depicted on charts comprise a system consisting of fixed and floating aids with varying degrees of reliability. Therefore, prudent mariners will not rely solely on any single aid to navigation, particularly a floating aid. The buoy symbol is used to indicate the approximate position of the buoy body and the sinker which secures the buoy to the seabed. The approximate position is used because of practical limitations in positioning and maintaining buoys and their sinkers in precise geographical locations. These limitations include, but are not limited to, inherent imprecisions in position fixing methods, prevailing atmospheric and sea conditions, the slope of and the material making up the seabed, the fact that buoys are moored to sinkers by varying lengths of chain, and the fact that buoy and/or sinker positions are not under continuous surveillance but are normally checked only during periodic maintenance visits which often occur more than a year apart. The position of the buoy body can be expected to shift inside and outside the charting symbol due to the forces of nature. The mariner is also cautioned that buoys are liable to be carried away, shifted, capsized, sunk, etc. Lighted buoys may be extinguished or sound signals may not function as the result of ice or other natural causes, collisions, or other accidents. -
Interstate Commerce Act 49 App
Interstate Commerce Act 49 App. u.s.c. § 1 et seg. (1988) The Interstate commerce Act was partially repealed and recodified in 1978. However, according to Public Law No. 95-473, § 4(c): 92 stat. 1466-1470 (1978), those portions of the old_ICA that were repealed and recodified in 1978, nevertheless remain in effect as they existed on October 1, 1977, to the extent that these laws relate to the movement of oil by pipeline and the rates and charges related thereto. The ICA related to oil pipeline regulation is found as an appendix to Title 49 of the United States Code, and was reprinted in the second edition of Volume I of Staff's Oil Pipeline Handbook. However, the U.S. Code 1988 edition is the last to include the appendix. Although the appendix still applies to oil pipeline regulation, it was, for unknown reasons, excluded from the 1994 edition of the u.s. Code. Therefore, we are reprinting it in this volume. Interstate Commerce Act 49 App. u.s.c. § 1 et seq. (1988) TITLE .t9. APPE.SDIX-TRANSPORTATIO.S . di.x consists of sections of former Title 49 that were not included in Title 49 as enacted Tlus A~e; L 95 _473 and Pub. L. 97-449, and certain laws related to transportation that were en bY · l~r Pub L. 95-473. Sections /rom former Title 49 retain the same section numbers in :-f:~~endiz. 'For d~.sp.osition of all sections of former Title 49, see Table at beginning ot Title 49, Transportatlon. Sec. -
STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur.