Draft Genomes of the Corallimorpharians Amplexidiscus Fenestrafer and Discosoma Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: Documenting Unusual Reefs
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303060119 Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs Article · May 2016 DOI: 10.5281/zenodo.51289 CITATIONS READS 0 174 6 authors, including: Nicole Crane Peter Ansgar Nelson Cabrillo Community College District University of California, Santa Cruz 21 PUBLICATIONS 248 CITATIONS 26 PUBLICATIONS 272 CITATIONS SEE PROFILE SEE PROFILE Giacomo Bernardi University of California, Santa Cruz 367 PUBLICATIONS 4,728 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: One People One Reef: Micronesian outer islands View project Stay or Go View project All content following this page was uploaded by Nicole Crane on 13 May 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Corallimorph and Montipora Reefs in Ulithi Atoll, Micronesia: documenting unusual reefs NICOLE L. CRANE Department of Biology, Cabrillo College, 6500 Soquel Drive, Aptos, CA 95003, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA MICHELLE J. PADDACK Santa Barbara City College, Santa Barbara, CA 93109, USA Oceanic Society, P.O. Box 844, Ross, CA 94957, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA PETER A. NELSON H. T. Harvey & Associates, Los Gatos, CA 95032, USA Institute of Marine Science, University of California Santa Cruz, CA 95060, USA One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA AVIGDOR ABELSON Department of Zoology, Tel Aviv University, Ramat Aviv, 69978, Israel One People One Reef, 100 Shaffer Road, Santa Cruz, CA 95060, USA JOHN RULMAL, JR. -
Unfolding the Secrets of Coral–Algal Symbiosis
The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin. -
The Earliest Diverging Extant Scleractinian Corals Recovered by Mitochondrial Genomes Isabela G
www.nature.com/scientificreports OPEN The earliest diverging extant scleractinian corals recovered by mitochondrial genomes Isabela G. L. Seiblitz1,2*, Kátia C. C. Capel2, Jarosław Stolarski3, Zheng Bin Randolph Quek4, Danwei Huang4,5 & Marcelo V. Kitahara1,2 Evolutionary reconstructions of scleractinian corals have a discrepant proportion of zooxanthellate reef-building species in relation to their azooxanthellate deep-sea counterparts. In particular, the earliest diverging “Basal” lineage remains poorly studied compared to “Robust” and “Complex” corals. The lack of data from corals other than reef-building species impairs a broader understanding of scleractinian evolution. Here, based on complete mitogenomes, the early onset of azooxanthellate corals is explored focusing on one of the most morphologically distinct families, Micrabaciidae. Sequenced on both Illumina and Sanger platforms, mitogenomes of four micrabaciids range from 19,048 to 19,542 bp and have gene content and order similar to the majority of scleractinians. Phylogenies containing all mitochondrial genes confrm the monophyly of Micrabaciidae as a sister group to the rest of Scleractinia. This topology not only corroborates the hypothesis of a solitary and azooxanthellate ancestor for the order, but also agrees with the unique skeletal microstructure previously found in the family. Moreover, the early-diverging position of micrabaciids followed by gardineriids reinforces the previously observed macromorphological similarities between micrabaciids and Corallimorpharia as -
Transcriptome Analysis of the Reef-Building Octocoral, Heliopora
www.nature.com/scientificreports OPEN Transcriptome analysis of the reef-building octocoral, Heliopora coerulea Received: 25 August 2017 Christine Guzman1,2, Chuya Shinzato3, Tsai-Ming Lu 4 & Cecilia Conaco1 Accepted: 9 May 2018 The blue coral, Heliopora coerulea, is a reef-building octocoral that prefers shallow water and exhibits Published: xx xx xxxx optimal growth at a temperature close to that which causes bleaching in scleractinian corals. To better understand the molecular mechanisms underlying its biology and ecology, we generated a reference transcriptome for H. coerulea using next-generation sequencing. Metatranscriptome assembly yielded 90,817 sequences of which 71% (64,610) could be annotated by comparison to public databases. The assembly included transcript sequences from both the coral host and its symbionts, which are related to the thermotolerant C3-Gulf ITS2 type Symbiodinium. Analysis of the blue coral transcriptome revealed enrichment of genes involved in stress response, including heat-shock proteins and antioxidants, as well as genes participating in signal transduction and stimulus response. Furthermore, the blue coral possesses homologs of biomineralization genes found in other corals and may use a biomineralization strategy similar to that of scleractinians to build its massive aragonite skeleton. These fndings thus ofer insights into the ecology of H. coerulea and suggest gene networks that may govern its interactions with its environment. Octocorals are the most diverse coral group and can be found in various marine environments, including shallow tropical reefs, deep seamounts, and submarine canyons1. Tey reportedly exhibit greater resistance and resil- ience to environmental perturbations, particularly to thermal stress, compared to scleractinians2–4. -
Asia-Pacific Network for Global Change Research (APN) FEDERAL AGENCY of RESEARCH ORGANIZATIONS FAR EASTERN BRANCH of the RUSSIAN ACADEMY of SCIENCES A.V
Asia-Pacific Network for Global Change Research (APN) FEDERAL AGENCY OF RESEARCH ORGANIZATIONS FAR EASTERN BRANCH OF THE RUSSIAN ACADEMY OF SCIENCES A.V. Zhirmunsky Institute of Marine Biology VIETNAM ACADEMY OF SCIENCES AND TECHNOLOGY Institute of Oceanography Proceedings of the Workshop “DEVELOPING LIFE–SUPPORTING MARINE ECOSYSTEMS ALONG WITH THE ASIA–PACIFIC COASTS – A SYNTHESIS OF PHYSICAL AND BIOLOGICAL DATA FOR THE SCIENCE–BASED MANAGEMENT AND SOCIO–ECOLOGICAL POLICY MAKING” under the aegis of the APN (Asia-Pacific Network for Global Change Research), VAST (Vietnam Academy of Sciences and Technology) and RAS (Russian Academy of Sciences) Vladivostok – Nha Trang Dalnauka 2016 УДК 574.5+574.9 DEVELOPING LIFE–SUPPORTING MARINE ECOSYSTEMS ALONG WITH THE ASIA–PACIFIC COASTS – A SYNTHESIS OF PHYSICAL AND BIOLOGICAL DATA. Edited by T.N. Dautova. Vladivostok: Dalnauka, 2016. 180 p. The book summarizes results of the workshop in the area of biodiversity, marine ecology and biogeography of the South China Sea and adjacent regions held on December 21–22 in Nha Trang, Vietnam. It discusses the synthesis of the biological data concerning the region and surrounding environments, such as marine currents, sedimentation, eutrophication and pollution. The special attention is paid to the policy making for science-based conservation and rational using of the marine ecosystems along with the Asia-pacific coasts. Organizing Committee Dr. Tatiana N. Dautova (co-chair), A.V. Zhirmunsky Institute of Marine Biology FEB RAS and FEFU, Russia Dr. Dao Viet Ha (co-chair), Vice Director of Institute Oceanography, VAST, Vietnam Nguyen Phi Phat, Deputy Head of Department of General Management, Institute Oceanography, VAST, Vietnam Bui Thi Minh Ha, International relation officer, Institute of Oceanography, VAST, Vietnam Nguyen Ky, Institute Oceanography, VAST, Vietnam Thi Thu, Institute Oceanography, VAST, Vietnam Editor of the proceedings Tatiana N. -
First Records of the Sea Anemones Stichodactyla Tapetum
Turkish Journal of Zoology Turk J Zool (2015) 39: 432-437 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Research Article doi:10.3906/zoo-1403-50 First records of the sea anemones Stichodactyla tapetum and Stichodactyla haddoni (Anthozoa: Actiniaria: Stichodactylidae) from the southeast of Iran, Chabahar (Sea of Oman) Gilan ATTARAN-FARIMAN*, Pegah JAVID Department of Marine Biology, Faculty of Marine Sciences, Chabahar Maritime University, Chabahar, Iran Received: 26.03.2014 Accepted: 28.08.2014 Published Online: 04.05.2015 Printed: 29.05.2015 Abstract: Sea anemones (order Actiniaria) are among the most widespread invertebrates in the tropical waters. The anthozoans Stichodactyla haddoni (Saville-Kent, 1893) and Stichodactyla tapetum (Hemprich & Ehrenberg in Ehrenberg, 1834) (family Stichodactylidae) were reported for the first time from the southeastern coast of Iran, Chabahar Bay, Tiss zone. The specimens of S. haddoni and S. tapetum were collected by hand from the intertidal zone of sand and rock substrates in April 2012. The samples characteristics were morphologically studied in the field and laboratory. This study presents a new locality record and information about S. haddoni and S. tapetum found in this part of the tropical sea. Key words: Exocoelic tentacles, endocoelic tentacles, tropical sea, morphological identification, symbiotic life 1. Introduction crustaceans like crabs and shrimps (Khan et al., 2004; The order Actiniaria Hertwig, 1882 (phylum Cnidaria), Katwate and Sanjeevi, 2011, Nedosyko et al., 2014), but with 46 families, includes solitary polyps with soft bodies there has been no report from Stichodactyla tapetum and nonpinnate tentacles (Daly et al., 2007). The family hosting anemonefish (Fautin et al., 2008). -
Sex, Polyps, and Medusae: Determination and Maintenance of Sex in Cnidarians†
e Reviewl Article Sex, Polyps, and Medusae: Determination and maintenance of sex in cnidarians† Runningc Head: Sex determination in Cnidaria 1* 1* i Stefan Siebert and Celina E. Juliano 1Department of Molecular and Cellular Biology, University of California, Davis, CA t 95616, USA *Correspondence may be addressed to [email protected] or [email protected] r Abbreviations:GSC, germ line stem cell; ISC, interstitial stem cell. A Keywords:hermaphrodite, gonochorism, Hydra, Hydractinia, Clytia Funding: NIH NIA 1K01AG044435-01A1, UC Davis Start Up Funds Quote:Our ability to unravel the mechanisms of sex determination in a broad array of cnidariansd requires a better understanding of the cell lineage that gives rise to germ cells. e †This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which t may lead to differences between this version and the Version of Record. Please cite this article as doi: [10.1002/mrd.22690] p e Received 8 April 2016; Revised 9 August 2016; Accepted 10 August 2016 c Molecular Reproduction & Development This article is protected by copyright. All rights reserved DOI 10.1002/mrd.22690 c This article is protected by copyright. All rights reserved A e l Abstract Mechanisms of sex determination vary greatly among animals. Here we survey c what is known in Cnidaria, the clade that forms the sister group to Bilateria and shows a broad array of sexual strategies and sexual plasticity. This observed diversity makes Cnidariai a well-suited taxon for the study of the evolution of sex determination, as closely related species can have different mechanisms, which allows for comparative studies.t In this review, we survey the extensive descriptive data on sexual systems (e.g. -
Host-Specialist Lineages Dominate the Adaptive Radiation of Reef Coral Endosymbionts
ORIGINAL ARTICLE doi:10.1111/evo.12270 HOST-SPECIALIST LINEAGES DOMINATE THE ADAPTIVE RADIATION OF REEF CORAL ENDOSYMBIONTS Daniel J. Thornhill,1 Allison M. Lewis,2 Drew C. Wham,2 and Todd C. LaJeunesse2,3 1Department of Conservation Science and Policy, Defenders of Wildlife, 1130 17th Street NW, Washington, DC 20007 2Department of Biology, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802 3E-mail: [email protected] Received April 8, 2013 Accepted September 4, 2013 Data Archived: Dryad doi: 10.5061/dryad.2247c Bursts in species diversification are well documented among animals and plants, yet few studies have assessed recent adaptive radiations of eukaryotic microbes. Consequently, we examined the radiation of the most ecologically dominant group of endosym- biotic dinoflagellates found in reef-building corals, Symbiodinium Clade C, using nuclear ribosomal (ITS2), chloroplast (psbAncr), and multilocus microsatellite genotyping. Through a hierarchical analysis of high-resolution genetic data, we assessed whether ecologically distinct Symbiodinium, differentiated by seemingly equivocal rDNA sequence differences, are independent species lin- eages. We also considered the role of host specificity in Symbiodinium speciation and the correspondence between endosymbiont diversification and Caribbean paleo-history. According to phylogenetic, biological, and ecological species concepts, Symbiodinium Clade C comprises many distinct species. Although regional factors contributed to population-genetic structuring of these lineages, Symbiodinium diversification was mainly driven by host specialization. By combining patterns of the endosymbiont’s host speci- ficity, water depth distribution, and phylogeography with paleo-historical signals of climate change, we inferred that present-day species diversity on Atlantic coral reefs stemmed mostly from a post-Miocene adaptive radiation. -
Aquaculture of Coral, Live Rocks and Associated Products
AQUACULTURE OF CORAL, LIVE ROCKS AND ASSOCIATED PRODUCTS Aquaculture Policy FISHERIES MANAGEMENT PAPER NO. 245 Published by Department of Fisheries 168 St. Georges Terrace Perth WA 6000 August 2009 ISSN 0819-4327 The Aquaculture of Coral, Live Rocks and Associated Products Aquaculture Policy August 2009 Fisheries Management Paper No. 245 ISSN 0819-4327 ii Fisheries Management Paper No.245 CONTENTS DISCLAIMER...................................................................................................................... iv ACKNOWLEDGEMENT ................................................................................................... iv EXECUTIVE SUMMARY ................................................................................................. 1 SECTION 1 INTRODUCTION ........................................................................................ 2 SECTION 2 BACKGROUND .......................................................................................... 3 2.1 What is Coral? ...................................................................................................... 3 2.1.1 Stony Corals .......................................................................................... 3 2.1.2 Soft Corals ............................................................................................. 5 2.1.3 False Corals and Coral Anemones – the Coralliomorphs ...................... 6 2.1.4 Button Polyps – the Zoanthids ............................................................... 6 2.2 What are Live Rock and -
University of Southampton Research Repository
University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES School of Ocean and Earth Science Fluorescence on Coral Reefs by Elena Bollati Thesis for the degree of Doctor of Philosophy April 2018 A Claudia e Gabriella, Che mi hanno insegnato ad imparare E a non temere le alghe ballerine To Claudia and Gabriella, Who taught me to learn And not to fear the dancing seaweeds UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Thesis for the degree of Doctor of Philosophy FLUORESCENCE ON CORAL REEFS by Elena Bollati Coral reefs are highly biodiverse ecosystems and provide vital resources for the human population. Due to increasing pressure by climate change and local stressors, these ecosystems currently face a global crisis. -
Spectral Diversity of Fluorescent Proteins from the Anthozoan Corynactis Californica
Mar Biotechnol (2008) 10:328–342 DOI 10.1007/s10126-007-9072-7 ORIGINAL ARTICLE Spectral Diversity of Fluorescent Proteins from the Anthozoan Corynactis californica Christine E. Schnitzler & Robert J. Keenan & Robert McCord & Artur Matysik & Lynne M. Christianson & Steven H. D. Haddock Received: 7 September 2007 /Accepted: 19 November 2007 /Published online: 11 March 2008 # Springer Science + Business Media, LLC 2007 Abstract Color morphs of the temperate, nonsymbiotic three to four distinct genetic loci that code for these colors, corallimorpharian Corynactis californica show variation in and one morph contains at least five loci. These genes pigment pattern and coloring. We collected seven distinct encode a subfamily of new GFP-like proteins, which color morphs of C. californica from subtidal locations in fluoresce across the visible spectrum from green to red, Monterey Bay, California, and found that tissue– and color– while sharing between 75% to 89% pairwise amino-acid morph-specific expression of at least six different genes is identity. Biophysical characterization reveals interesting responsible for this variation. Each morph contains at least spectral properties, including a bright yellow protein, an orange protein, and a red protein exhibiting a “fluorescent timer” phenotype. Phylogenetic analysis indicates that the Christine E. Schnitzler and Robert J. Keenan contributed equally to FP genes from this species evolved together but that this work. diversification of anthozoan fluorescent proteins has taken Data deposition footnote: -
Giant Group I Intron in a Mitochondrial Genome Is Removed by RNA Back‑Splicing Sylvia Ighem Chi1, Mikael Dahl1, Åse Emblem1 and Steinar D
Chi et al. BMC Molecular Biol (2019) 20:16 https://doi.org/10.1186/s12867-019-0134-y BMC Molecular Biology RESEARCH ARTICLE Open Access Giant group I intron in a mitochondrial genome is removed by RNA back-splicing Sylvia Ighem Chi1, Mikael Dahl1, Åse Emblem1 and Steinar D. Johansen1,2* Abstract Background: The mitochondrial genomes of mushroom corals (Corallimorpharia) are remarkable for harboring two complex group I introns; ND5-717 and COI-884. How these autocatalytic RNA elements interfere with mitochondrial RNA processing is currently not known. Here, we report experimental support for unconventional processing events of ND5-717 containing RNA. Results: We obtained the complete mitochondrial genome sequences and corresponding mitochondrial transcrip- tomes of the two distantly related corallimorpharian species Ricordea yuma and Amplexidiscus fenestrafer. All mito- chondrial genes were found to be expressed at the RNA-level. Both introns were perfectly removed by autocatalytic splicing, but COI-884 excision appeared more efcient than ND5-717. ND5-717 was organized into giant group I intron elements of 18.1 kb and 19.3 kb in A. fenestrafer and R. yuma, respectively. The intron harbored almost the entire mitochondrial genome embedded within the P8 peripheral segment. Conclusion: ND5-717 was removed by group I intron splicing from a small primary transcript that contained a permutated intron–exon arrangement. The splicing pathway involved a circular exon-containing RNA intermediate, which is a hallmark of RNA back-splicing. ND5-717 represents the frst reported natural group I intron that becomes excised by back-splicing from a permuted precursor RNA. Back-splicing may explain why Corallimorpharia mitochon- drial genomes tolerate giant group I introns.