Relation Between Radon in Schools and in Dwellings: a Case Study in a Rural Region of Southern Serbia – the “Onion Study”

Total Page:16

File Type:pdf, Size:1020Kb

Relation Between Radon in Schools and in Dwellings: a Case Study in a Rural Region of Southern Serbia – the “Onion Study” Relation between radon in schools and in dwellings: a case study in a rural region of Southern Serbia – the “Onion Study” P. Bossew 1, Z.S. Žuni ć 2, C. Carpentieri 3, N. Veselinovi ć 2, G. Venoso 3, T. Tollefsen 5, S. Antignani 3, P. Kolarž 4, V. Udovi čić4, R. Banjanac 4, F. Bochicchio 3 1 German Federal Office for Radiation Protection, Köpenicker Allee 120-130, 10318 Berlin, Germany; [email protected] 2 Institute of Nuclear Sciences “Vinca”, University of Belgrade, P.O. Box 522, 11000, Belgrade, Serbia 3 Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy 4 Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia 5 Institute for Transuranium Elements, European Commission - DG Joint Research Centre, Via E. Fermi 2749, 21027 Ispra (VA), Italy Rationale & background - 1 • question 1: is there a statistical relationship between indoor Rn concentrations in dwellings (C) and schools (S) at nearby locations? (it can be expected for physical reasons) • question 2: if so, how can it be quantified? Can C and S be predicted from each other? Onion1-SEERAS-pb140525 2 of 16 Rationale & background - 2 -380000 • Background 1: Kriging school surveys are easier -400000 Sokobanja Bq/m³ than surveys of dwellings; -420000 600 identification of Rn prone Serbia 550 -440000 500 Vlasotince areas and estimates of Rn in 450 -460000 Bojnik dwellings from Rn in schools Crna Trava 400 350 -480000 would be practical. Lebane Surdulica Vladicin Han 300 Vranje BG • Background 2: -500000 250 For S Serbia a “school Rn” Medveda 200 -520000 150 XK Bujanovac map has been created. Can 100 Borsilegrad it be used for assessing -540000 50 Trgoviste indoor Rn risk in dwellings? -560000 Presevo MK • Background 3: 980000 1000000 1020000 1040000 1060000 1080000 1100000 1120000 980000 EU-BSS treats dwellings Bossew P. et al (2014): Geographical distribution of the annual mean and workplaces equally. radon concentrations in primary schools of Southern Serbia e application of geostatistical methods. J. Environmental Radioactivity 127, 141-148 Onion1-SEERAS-pb140525 3 of 16 problem & strategy • main problem: schools and dwellings not at same location ⇒ how to compare them? Previous investigations of several authors: no or little relationship. • strategy: small project designed such that a relationship can likely be noticed ... if it exists. Onion1-SEERAS-pb140525 4 of 16 The “onion project” -390000 • Sokobanja municipality: Jošanica -392000 Vrmdza Mužinac 12 villages / towns, in -394000 each one primary school; Žuckovac Bogdinac -396000 Beli Potok 108 dwellings (living Citluk -398000 Trubarevac Blendija rooms, ground floor). Soko Banja -400000 Rn concentrations, annual Resnik -402000 20 to 50 50 to 100 mean, 2012-2013. TE 100 to 200 -404000 Rn, Bq/m³ 200 to 300 detectors, CR-39, Italian -406000 National Institute of Jezero -408000 Health. 1022000 1026000 1030000 1034000 1038000 1042000 • Houses selected in spatial 1 0.9 1000 relation to school in 0.8 ⇒ 0.7 “distance shells” 0.6 500 realized “onion” design, to 0.5 planned 0.4 facilitate recognition of 0.3 0 0.2 cumulativehouses of fraction relation schools ~ dwelling 0.1 0 -500 as function of distance. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 area of circle around school (km²) -1000 towns projected on each other; centre=school -1000 -500 0 500 1000 Onion1-SEERAS-pb140525 5 of 16 Examples Josanica Blendija Onion1-SEERAS-pb140525 6 of 16 methods • @ question 1 (qualitative): - collocation C(x) to locations of S(x’) - aggregation of C(x i) into towns - cross-variography (~ correlation C(x)~S(x’) in dependence of distance (x,x’)) - reduction to univariate : R:= ratio C(x)/S(x’) in dependence of distance (x,x’) • @ question 2 (quantitative): - evaluation of ratio R seems easiest; - bivariate association / correlation measures, joint distribution (C,S), conditional distributions, statistics on these. - cokriging etc. does not seem appropriate for this case. In any case: quite a bit of statistics necessary.... Will not be presented here see article (in preparation) Onion1-SEERAS-pb140525 7 of 16 results 1 - qualitative collocation, home estim. 5.5aggregation into towns: 2.3 at school location: 5.3 2.2 5.1 2.1 4.9 2 4.7 1.9 4.5 4.3 1.8 4.1 ln(school,Bq/m³) 1.7 3.9 log10(homesBq/m³) estim., 1.6 3.7 1.5 3.5 1.5 1.7 1.9 2.1 2.3 2.5 3.5 3.7 3.9 4.1 4.3 4.5 4.7 log10(school, Bq/m³) ln(GM(home), Bq/m³) 0.45 0.4 All methods show: 0.35 1 there is a relation between 0.3 2 3 0.25 4 dwellings and schools! 0.2 5 7 Gamma ((Bq/m³)²) Gamma 0.15 8 9 0.1 Clark-type pseudo-crossvariogram, 10 γ (α) α 0.05 model *12 (h):=(1/2) E[(Z 1(x)-Z2(x+h)) ]; α 0 Z1=dwelling, Z 2=school, here =2 0 100 200 300 400 500 600 700 800 900 1000 9 estimates with different estimation parameters lag (m) Onion1-SEERAS-pb140525 8 of 16 lagged ratio γ (1) lagged ratio q(h) := E[Z 1(x)/Z 2(x+h)] = 2 *12 (h) of log Z, h = distance between locations of observations z 1 and z 2 cumulative version: Q(h):= E[Z 1(x)/Z 2(x‘): |x-x‘| ≤h] probabilistic: P(a,h) := prob(Z 1(x)/Z 2(x‘))>a: |x-x‘| ≤h → P(a,h)=prob(dwelling ≥ a · school | distance ≤h) → prob(dwelling ≥ threshold | school) = P(threshold/school, h) if Q(h) ~ LN: prob(dwelling ≥ threshold | school) = 1 - Φ((ln(thresh/school)-µ)/ σ) Φ= standard normal, µ=ln(GM), σ=ln(GSD) µ, σ are functiuons of h ! In particular important for h=0: dwelling on hypothetically same location as school Onion1-SEERAS-pb140525 9 of 16 lagged ratio - 2 AM and GM of the ratio (dwelling/school) in dependence of maximal distance between them. curves = Kernel regression, median and quantiles over the ensemble of many estimates of Q(h) For h=0: GM ≈ 0.5 (0.45 … 0.55), GSD ≈ 1.62 AM ≈ 0.55 under LN hypothesis: probability that dwelling > reference value c, given value of school, at (hypothetically) same location (h=0) from estimates GM, GSD as above. Ex.: school=200: prob(dwelling>100) = 0.50 (0.41 … 0.58) prob(dwelling>300) = 0.011 (0.006 … 0.019) Onion1-SEERAS-pb140525 10 of 16 lagged ratio - 3 predictions based on modelled ratio prob(dwelling > threshold | school) Expectation E[dwelling | school] not reliable ! prob(dwelling > threshold | school) > p 0 Onion1-SEERAS-pb140525 11 of 16 bivariate -1 Alternative: estimate a model of the bivariate (joint) distribution F 12 of dwellings and schools Ψ Ψ at lag h, by F12 (z 1, z 2)(h)= ϑ(h)(F 1(z 1),F 2(z 2))=: (z 1,z 2) (Sklar theorem) ∂Ψ ∂ From this, prob(Z 1>t | Z 2=z 2) = 1- (t,z 2)/ F2(z 2) Problems: estimate model (copula) Ψϑ and parameters ϑ; good estimates of Fi(z i) required. Possibilities: ρ γ 1) Bi-Gaussian via Spearman (h=0) = 1 – 12 *12 (0); γ *12 = cross-variogram for ranks of z 1 and z 2. 2) Gumbel via ϑ = 1/(1-τ) ( τ=Kendall correlation) here we try option 2; lagged τ(0) ≈ 0.48; problems: - estimation of parameters ϑ not easy! - estimation of true distributions F 1 and F 2 uncertain! Onion1-SEERAS-pb140525 12 of 16 bivariate - 2 predictions based on modelled bivariate distributions (schools, dwellings) prob(dwelling > threshold | school) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 prob[dwelling>100] 0.2 0.1 450 0 400 y = 0.62x + 10.98 2 100 R = 0.98 0 100 200 300 400 500 600 700 350 90 E[school] 300 80 probability prob(dwelling>100) 250 70 200 60 as function of Rn in school 150 50 E[dwelling; model] E[dwelling; 100 40 50 30 prob(C>100)>p 0 20 0 100 200 300 400 500 600 700 10 E[school] which in domain of fraction 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 fraction of domain affected slope = mean ratio dwelling/school p ≈ 0.62 (compare for ratio model: 0.55) Onion1-SEERAS-pb140525 13 of 16 validation ? how to validate? Problem: data not sufficient for dividing into calibration and validation set. 1 0.9 comparison of empirical empir 0.8 bivar and modelled probability, 0.7 ratio prob(dwelling>100 | school) 0.6 uncert. for empirical: (q05,q95) 0.5 under Poisson hypothesis 0.4 0.3 prob(dwelling>100) 0.2 0.1 1 0 0.9 30 40 50 60 70 80 90 100 110 0.8 AM(dwelling) per town 0.7 0.6 0.5 comparison of probabilities estimated 0.4 with the two models (ratio; bivariate) prob(C>100; ratio) prob(C>100; 0.3 0.2 0.1 not really consistent! – further work 0 required for clarification! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 prob(C>100; bivar) Onion1-SEERAS-pb140525 14 of 16 conclusions 1. We could show that there is a relationship between Rn (annual mean concentrations) in schools and in dwelllings. (To be expected for physical reasons.) 2. We could quantify ratios between dwellings and schools; but the uncertainty is relatively high… probably a consequence of (a) the small data set; (b) the variability of physical characteristics of schools and houses, which acts as „noise“ which obscures the relationship in tendency; (c) parametrization of models is difficult.
Recommended publications
  • Republic of Serbia Ipard Programme for 2014-2020
    EN ANNEX Ministry of Agriculture and Environmental Protection Republic of Serbia REPUBLIC OF SERBIA IPARD PROGRAMME FOR 2014-2020 27th June 2019 1 List of Abbreviations AI - Artificial Insemination APSFR - Areas with Potential Significant Flood Risk APV - The Autonomous Province of Vojvodina ASRoS - Agricultural Strategy of the Republic of Serbia AWU - Annual work unit CAO - Competent Accrediting Officer CAP - Common Agricultural Policy CARDS - Community Assistance for Reconstruction, Development and Stabilisation CAS - Country Assistance Strategy CBC - Cross border cooperation CEFTA - Central European Free Trade Agreement CGAP - Code of Good Agricultural Practices CHP - Combined Heat and Power CSF - Classical swine fever CSP - Country Strategy Paper DAP - Directorate for Agrarian Payment DNRL - Directorate for National Reference Laboratories DREPR - Danube River Enterprise Pollution Reduction DTD - Dunav-Tisa-Dunav Channel EAR - European Agency for Reconstruction EC - European Commission EEC - European Economic Community EU - European Union EUROP grid - Method of carcass classification F&V - Fruits and Vegetables FADN - Farm Accountancy Data Network FAO - Food and Agriculture Organization FAVS - Area of forest available for wood supply FOWL - Forest and other wooded land FVO - Food Veterinary Office FWA - Framework Agreement FWC - Framework Contract GAEC - Good agriculture and environmental condition GAP - Gross Agricultural Production GDP - Gross Domestic Product GEF - Global Environment Facility GEF - Global Environment Facility GES
    [Show full text]
  • ODLUKU O Izboru Pravnih Lica Za Poslove Iz Programa Mera Zdravstvene Zaštite Životinja Za Period 2014–2016
    Na osnovu člana 53. stav 5. Zakona o veterinarstvu („Službeni glasnik RS”, br. 91/05, 30/10, 93/12), Ministar poljoprivrede, šumarstva i vodoprivrede donosi ODLUKU o izboru pravnih lica za poslove iz Programa mera zdravstvene zaštite životinja za period 2014–2016. godine Poslovi iz Programa mera za period 2014–2016. godine, koji su utvrđeni kao poslovi od javnog interesa, ustupaju se sledećim pravnim licima: Grad Beograd 1. VS „Tika Vet” Mladenovac Rabrovac, Jagnjilo, Markovac Amerić, Beljevac, Velika Ivanča, Velika Krsna, Vlaška, Granice, Dubona, Kovačevac, Koraćica, Mala Vrbica, 2. VS „Mladenovac” Mladenovac Međulužje, Mladenovac, selo Mladenovac, Pružatovac, Rajkovac, Senaja, Crkvine, Šepšin Baljevac, Brović, Vukićevica, Grabovac, Draževac, VS „Aćimović– 3. Obrenovac Zabrežje, Jasenak, Konatica, LJubinić, Mislođin, Piroman, Obrenovac” Poljane, Stubline, Trstenica Belo Polje, Brgulice, Veliko Polje, Dren, Zvečka, Krtinska, 4. VS „Dr Kostić” Obrenovac Orašac, Ratari, Rvati, Skela, Ušće, Urovci 5. VS „Simbiosis Vet” Obrenovac Obrenovac, Barič, Mala Moštanica 6. VS „Nutrivet” Grocka Begaljica, Pudarci, Dražanj Umčari, Boleč, Brestovik, Vinča, Grocka, Živkovac, 7. VS „Grocka” Grocka Zaklopača, Kaluđerica, Kamendo, Leštane, Pudraci, Ritopek Baroševac, Prkosava, Rudovci, Strmovo, Mali Crljeni, 8. VS „Arnika Veterina” Lazarevac Kruševica, Trbušnica, Bistrica, Dren Vrbovno, Stepojevac, Leskovac, Sokolovo, Cvetovac, 9. VS „Artmedika Vet” Lazarevac Vreoci, Veliki Crljeni, Junkovac, Arapovac, Sakulja Lazarevac, Šopić, Barzilovica, Brajkovac, Čibutkovica, VS „Alfa Vet CO 10. Lazarevac Dudovica, Lukovica, Medoševac, Mirosaljci, Zeoke, Petka, 2007” Stubica, Šušnjar, Županjac, Burovo 11. VS „Ardis Vet” Sopot Slatina, Dučina, Rogača, Sibnica, Drlupa 12. VS „Uniprim Vet” Barajevo Arnajevo, Rožanci, Beljina, Boždarevac, Manić 13. VS „Vidra-Vet” Surčin Bečmen, Petrovčić, Novi Beograd, Bežanija Surčin Surčin, Dobanovci, Boljevci, Jakovo, Progar 14.
    [Show full text]
  • Подкласс Exogenia Collin, 1912
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.ecol-mne.com Contribution to the knowledge of distribution of Colubrid snakes in Serbia LJILJANA TOMOVIĆ1,2,4*, ALEKSANDAR UROŠEVIĆ2,4, RASTKO AJTIĆ3,4, IMRE KRIZMANIĆ1, ALEKSANDAR SIMOVIĆ4, NENAD LABUS5, DANKO JOVIĆ6, MILIVOJ KRSTIĆ4, SONJA ĐORĐEVIĆ1,4, MARKO ANĐELKOVIĆ2,4, ANA GOLUBOVIĆ1,4 & GEORG DŽUKIĆ2 1 University of Belgrade, Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia 2 University of Belgrade, Institute for Biological Research “Siniša Stanković”, Bulevar despota Stefana 142, 11000 Belgrade, Serbia 3 Institute for Nature Conservation of Serbia, Dr Ivana Ribara 91, 11070 Belgrade, Serbia 4 Serbian Herpetological Society “Milutin Radovanović”, Bulevar despota Stefana 142, 11000 Belgrade, Serbia 5 University of Priština, Faculty of Science and Mathematics, Biology Department, Lole Ribara 29, 38220 Kosovska Mitrovica, Serbia 6 Institute for Nature Conservation of Serbia, Vožda Karađorđa 14, 18000 Niš, Serbia *Corresponding author: E-mail: [email protected] Received 28 March 2015 │ Accepted 31 March 2015 │ Published online 6 April 2015. Abstract Detailed distribution pattern of colubrid snakes in Serbia is still inadequately described, despite the long historical study. In this paper, we provide accurate distribution of seven species, with previously published and newly accumulated faunistic records compiled. Comparative analysis of faunas among all Balkan countries showed that Serbian colubrid fauna is among the most distinct (together with faunas of Slovenia and Romania), due to small number of species. Zoogeographic analysis showed high chorotype diversity of Serbian colubrids: seven species belong to six chorotypes. South-eastern Serbia (Pčinja River valley) is characterized by the presence of all colubrid species inhabiting our country, and deserves the highest conservation status at the national level.
    [Show full text]
  • LEADER – Osnovni Principi I Stvaranje Partnerstava
    LEADER – osnovni principi i stvaranje partnerstava RADIONICA Negotin, 22.05.2018.god. TEME RADIONICE • Predstavljanje osnova LEADER pristupa • Prezentacija Lokalnih akcionih grupa u Srbiji – kratak razvojni put i trenutno stanje • Predstavljanje „Preporuka Istocnoj Srbiji u Uspostavljanju i izgradnji Lokalnih Akcionih Grupa u Odnosu na EU Integracije“ • Nacrt Pravilnika za Leader: u izradi LEADER – 27 godina uspešne metodologije za ruralni razvoj Postizanje strateških ciljeva jedne ili većeg broja osa Bolje upravljanje na lokalnom nivou Razvoj iznutra (lokalni resursi za rast i nova radna mesta) LEADER/Axis LEADER evolution 2007-2013 2,402 LAGs LEADER/Measure Mainstreamed 2014-2020 LEADER + 2,530 LAGs 2000-2006 LEADER II 1,153 LAGs Expected to reach 1994-1999 162 million All types of rural inhabitants 906 LAGs areas Disadvantaged rural areas LEADER I 1991-1993 Total public budget: 217 LAGs Total public budget: 9.7 Experimental 8.9 BILLION € phase Total public budget: Total public budget: BILLION € Total public budget: 5.4 BILLION € 5.1 BILLION € 1.2 BILLION € LEADER features • Bottom-up • Area based • Local partnership (Local Action Group) • Multi-sectoral integrated strategies • Networking • Innovation • Cooperation (inter-territorial and transnational) 5 Uloga i funkcionisanje LAG • Šta je LAG? • Zainteresovane strane: Ministarstvo odgovorno za ruralni razvoj, koje se naziva „Upravljačko telo“, Agencija za plaćanje i lokalne akcione grupe • Zadaci lokalnih akcionih grupa • LAG Teritorija LAG STRUKTURA LAG treba sadržavati najmanje sledeće
    [Show full text]
  • Field Experience with Direct Radon and Thoron Progeny Sensors (DRPS/DTPS) Results Being Distributed in the Balkan Region Rosaline Mishra1, Zora S
    TEERAS-2017 Field experience with Direct Radon and Thoron Progeny Sensors (DRPS/DTPS) results being distributed in the Balkan Region Rosaline Mishra1, Zora S. Zunic2, Zdenka Stojanovska3, Zoran Curguz 4, Ljiljana Gulan5, Janja Vaupotic6 Nenad Veselinovic2, Predrag.Kolarz 7,Gordana Milic5, Balvindar.K.Sapra1, Shinji Tokonami 8 1Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India 2 University of Belgrade,Vinca Institute of Nuclear Sciences, P.O.Box 522, 11000 Belgrade, Serbia 3 Faculty of Medical Sciences, GoceDelcev University, P. O. Box.201, 2000 Stip, Republic of Macedonia 4University of East Sarajevo, Faculty of Transport, Doboj, Republic of Srpska 5Faculty of Natural Sciences, University of Priština, KosovskaMitrovica, Serbia 6 Radon Center, Department of Environmental Sciences, Jožef Stefan Institute, Jamovacesta 39, 1000 Ljubljana,Slovenia 7 University of Belgrade, Institute of Physics, 11080, Belgrade, Serbia 8Department of Radiation Physics,Institute of Radiation Emergency Medicine,Hirosaki University,Aomari Prefecture,Japan Purpose:This paper reports the results of the international collaboration on direct measurements of radon (222Rn) and thoron (220Rn) progeny in indoor environments (dwellings and schools) in some parts of the whole of Balkan region (Serbia with Kosovo, Republic of Srpska, Slovenia and Republic of Macedonia). Instruments used: Passive deposition based 222Rn and 220Rn Progeny sensors Direct Thoron Progeny Sensor (DTPS): (50µ absorber) Exposure surface for deposition
    [Show full text]
  • Nadležne Veterinarske Stanice 2014 Do 2016
    ODLUKA O IZBORU PRAVNIH LICA ZA POSLOVE IZ PROGRAMA MERA ZDRAVSTVENE ZAŠTITE ŽIVOTINJA ZA PERIOD 2014-2016. GODINE ("Sl. glasnik RS", br. 23/2014) Poslovi iz Programa mera za period 2014-2016. godine, koji su utvrđeni kao poslovi od javnog interesa, ustupaju se sledećim pravnim licima: Grad Beograd 1. VS "Tika Vet" Mladenovac Rabrovac, Jagnjilo, Markovac 2. VS "Mladenovac" Mladenovac Amerić, Beljevac, Velika Ivanča, Velika Krsna, Vlaška, Granice, Dubona, Kovačevac, Koraćica, Mala Vrbica, Međulužje, Mladenovac, selo Mladenovac, Pružatovac, Rajkovac, Senaja, Crkvine, Šepšin 3. VS "Aćimović- Obrenovac Baljevac, Brović, Vukićevica, Grabovac, Draževac, Zabrežje, Jasenak, Obrenovac" Konatica, Ljubinić, Mislođin, Piroman, Poljane, Stubline, Trstenica 4. VS "Dr Kostić" Obrenovac Belo Polje, Brgulice, Veliko Polje, Dren, Zvečka, Krtinska, Orašac, Ratari, Rvati, Skela, Ušće, Urovci 5. VS "Simbiosis Vet" Obrenovac Obrenovac, Barič, Mala Moštanica 6. VS "Nutrivet" Grocka Begaljica, Pudarci, Dražanj 7. VS "Grocka" Grocka Umčari, Boleč, Brestovik, Vinča, Grocka, Živkovac, Zaklopača, Kaluđerica, Kamendo, Leštane, Pudarci, Ritopek 8. VS "Arnika Veterina" Lazarevac Baroševac, Prkosava, Rudovci, Strmovo, Mali Crljeni, Kruševica, Trbušnica, Bistrica, Dren 9. VS "Artmedika Vet" Lazarevac Vrbovno, Stepojevac, Leskovac, Sokolovo, Cvetovac, Vreoci, Veliki Crljeni, Junkovac, Arapovac, Sakulja 10. VS "Alfa Vet CO 2007" Lazarevac Lazarevac, Šopić, Barzilovica, Brajkovac, Čibutkovica, Dudovica, Lukovica, Medoševac, Mirosaljci, Zeoke, Petka, Stubica, Šušnjar, Županjac, Burovo 11. VS "Ardis Vet" Sopot Slatina, Dučina, Rogača, Sibnica, Drlupa 12. VS "Uniprim Vet" Barajevo Arnajevo, Rožanci, Beljina, Boždarevac, Manić 13. VS "Vidra-Vet" Surčin Bečmen, Petrovčić, Novi Beograd, Bežanija 14. VS "Srem-Vet" Surčin Surčin, Dobanovci, Boljevci, Jakovo, Progar Zemun Zemun 15. VS "Makrovet" Zemun Ugrinovci, Batajnica 16. VS "SV. Modest" Voždovac Ripanj, Zuce, Beli Potok, Kumodraž, selo Rakovica, Jajinci Grocka Vrčin 17.
    [Show full text]
  • Indeks Rasta Broja Stanovnika Po Naseljenim Mestima 2002-2011
    Indeks rasta broja stanovnika po naseljenim mestima 2002-2011. godine KELEBIJA ĐALA HORGOŠ BAČKI VINOGRADI SUBOTICA PALIĆ MARTONOŠ RABE SRPSKI KRSTUR HAJDUKOVO LJUTOVO LEGENDA MAJDAN MALI PESAK ŠUPLJAK SIGET MALE KANJIŽA PIJACE FILIĆ DONJI TAVANKUT MALA GORNJI BANATSKO ARANĐELOVO BOSNA TAVANKUT ZIMONIĆ NOVI KNEŽEVAC NOVO PODLOKANJ SELO BIKOVO VELEBIT VRBICA MIŠIĆEVO ADORJAN pad broja stanovnika RIĐICA OROM BAJMOK SANAD CRNA TREŠNJEVAC BARA RASTINA ĐURĐIN TOTOVO ALEKSA VIŠNJEVAC SELO BANATSKI ŠANTIĆ MONOŠTOR STANIŠIĆ STARI NOVI DOLINE ŽEDNIK ŽEDNIK ČOKA BAČKI BREG GAKOVO ČANTAVIR SENTA PAČIR MOKRIN BOGARAŠ BAČKO DUŠANOVO porast broja stranovnika KOLUT JAZOVO MALI BEOGRAD TORNJOŠ SVETOZAR MILETIĆ OSTOJIĆEVO GORNJI BREG NAKOVO STARA MORAVICA BAČKI SOKOLAC KARAĐORĐEVO ZOBNATICA BEZDAN ČONOPLJA SAJAN KEVI NOVO TOMISLAVCI MIĆUNOVO ORAHOVO PADEJ BANATSKO KRIVAJA GORNJA VELIKO SELO ROGATICA SVETIĆEVO STERIJINO KIKINDA IĐOŠ UTRINE BAČKI ADA BAČKA TOPOLA KAVILO stagnacija broja stanovnika MONOŠTOR SOMBOR KLJAJIĆEVO POBEDA TELEČKA OBORNJAČA BAJŠA NJEGOŠEVO BOGARAŠ OBORNJAČA SREDNJI SALAŠ NOVI GUNAROŠ BOČAR KOZARCI MOL PANONIJA BAGREMOVO KUPUSINA BAČKO PETROVO SELO RUSKO SRPSKA SELO CRNJA LIPAR MALI IĐOŠ RADOJEVO SIVAC MILEŠEVO NOVO MILOŠEVO bez stanovnika NOVA CRVENKA BANATSKA TOPOLA LOVĆENAC PRIGREVICA TOBA STAPAR VOJVODA STEPA CRVENKA HETIN SVILOJEVO FEKETIĆ APATIN NOVA BEČEJ CRNJA BAŠAID NOVI BEČEJ ALEKSANDROVO KRUŠČIĆ KULA BAČKI BRESTOVAC nepopisano područje Kosova i Metohije DOROSLOVO SRBOBRAN SONTA TORDA RADIČEVIĆ VRBAS SRPSKI ITEBEJ BAČKI
    [Show full text]
  • Region Opština Mesto Broj Goveda (Živih) BEOGRAD BARAJEVO
    Region Opština Mesto Broj goveda (živih) BEOGRAD BARAJEVO ARNAJEVO 307 BACEVAC 101 BARAJEVO 281 BELJINA 268 BOŽDAREVAC 226 GUNCATI 133 LISOVIĆ 111 MANIC 71 MELJAK 48 ROŽANCI 301 VELIKI BORAK 282 VRANIĆ 267 ŠILJAKOVAC 36 BEOGRAD-SURČIN BEČMEN 36 BOLJEVCI 111 DOBANOVCI 507 JAKOVO 193 PETROVČIĆ 257 PROGAR 79 SURČIN 51 GROCKA BEGALJICA 40 BOLEČ 5 BRESTOVIK 4 DRAŽANJ 128 GROCKA 4 KALUĐERICA 11 KAMENDOL 28 LEŠTANE 1 PUDARCI 87 UMČARI 488 VRCIN 88 ZAKLOPACA 5 ŽIVKOVAC 7 LAZAREVAC ARAPOVAC 89 BAROŠEVAC 34 BARZILOVICA 102 BISTRICA 150 BRAJKOVAC 184 BUROVO 12 CVETOVAC 64 DREN 128 DUDOVICA 247 JUNKOVAC 46 KRUŠEVICA 34 LAZAREVAC 20 LESKOVAC 146 LUKAVICA 54 MALI CRLJENI 35 MEDOŠEVAC 9 MIROSALJCI 236 PETKA 46 PRKOSAVA 7 Region Opština Mesto Broj goveda (živih) BEOGRAD LAZAREVAC RUDOVCI 26 SOKOLOVO 94 STEPOJEVAC 107 STRMOVO 52 STUBICA 33 TRBUŠNICA 286 VELIKI CRLJENI 165 VRBOVNO 114 VREOCI 26 ZEOKE 11 ČIBUTKOVICA 100 ŠOPIĆ 91 ŠUŠNJAR 39 ŽUPANJAC 35 MLADENOVAC AMERIC 183 BELJEVAC 91 CRKVINE 108 DUBONA 62 GRANICE 26 JAGNJILO 914 KORAĆICA 555 KOVAČEVAC 595 MALA VRBICA 46 MARKOVAC 161 MEĐULUŽJE 336 MLADENOVAC (SELO) 109 MLADENOVAC (VAROŠ) 128 PRUŽATOVAC 482 RABROVAC 1,109 RAJKOVAC 93 SENAJA 8 VELIKA IVANČA 960 VELIKA KRSNA 918 VLAŠKA 350 ŠEPŠIN 77 NOVI BEOGRAD NOVI BEOGRAD 22 OBRENOVAC BALJEVAC 117 BARIČ 28 BELO POLJE 64 BROVIĆ 354 DRAŽEVAC 434 DREN 389 GRABOVAC 1,109 JASENAK 316 KONATICE 93 KRTINSKA 915 LJUBINIC 436 MALA MOŠTANICA 38 MISLODIN 135 OBRENOVAC 19 ORAŠAC 573 PIROMAN 292 Region Opština Mesto Broj goveda (živih) BEOGRAD OBRENOVAC POLJANE 220 RATARI
    [Show full text]
  • Atrocities and War Crimes by Location
    ATROCITIES AND WAR CRIMES BY LOCATION he bulk of this report describes sites of mass • ICTY “reported” sites are analogous to KFOR’s killings and mass graves reported throughout “reported” sites. They are credible reports of mass TKosovo since late March 1999. Forensic teams killings or mass grave sites that have been received by and war crimes investigators from the International the ICTY but have not yet been further investigated. Criminal Tribunal for the former Yugoslavia (ICTY) and a • ICTY “confirmed” sites are the same as KFOR’s number of governments working on behalf of the ICTY, “confirmed” sites. They are reported sites where ICTY- and from the Kosovo Force (KFOR), have concentrated supported field investigations have been conducted and their efforts on investigating sites of mass killings and completed. The “confirmed” designation does not mass graves. The most complete lists of mass killings necessarily confirm the number of bodies “reported”, it and mass grave sites have been compiled by the ICTY simply signifies that a site investigation has been and KFOR. In addition, other international completed. The number of bodies found at a “confirmed” organizations have compiled less comprehensive lists of site does not always conform to the number of bodies atrocity sites. The following description of mass grave cited in “reported” or “identified” reports. and killing sites also includes refugee and press reports. Discrepancies between the number of reported and Sites have been ranked based on the taxonomies confirmed bodies does not necessarily preclude that developed by KFOR, and other sources for the ICTY. the true number of people killed at a particular site is KFOR uses a three-tiered classification ranging from not greater than the numbered designated as “reported” to “identified” to “confirmed” to categorize confirmed.
    [Show full text]
  • City Express Srbija Mesta
    BROJ GRAD CENTAR Zona PONEDELJA UTORAK SREDA ČETVRTAK PETAK SUBOTA 11000 BEOGRAD 11 1 Da Da Da Da Da 11000 BEOGRAD-SAVSKI VENAC 11 1 Da Da Da Da Da 11000 BEOGRAD-STARI GRAD 11 1 Da Da Da Da Da 11000 BEOGRAD-VRAČAR 111 DaDaDaDaDa 11010 BEOGRAD-VOŽDOVAC 11 1 Da Da Da Da Da 11030 BEOGRAD-ČUKARICA 111 DaDaDaDaDa 11030 BEOGRAD-RAKOVICA 111 DaDaDaDaDa 11030 BEOGRAD-SAVSKI VENAC 11 1 Da Da Da Da Da 11040 BEOGRAD-SAVSKI VENAC 11 1 Da Da Da Da Da 11040 BEOGRAD-RAKOVICA 111 DaDaDaDaDa 11040 BEOGRAD-VOŽDOVAC 11 1 Da Da Da Da Da 11050 BEOGRAD-VOŽDOVAC 11 1 Da Da Da Da Da 11050 BEOGRAD-VRAČAR 111 DaDaDaDaDa 11050 BEOGRAD-ZVEZDARA 111 DaDaDaDaDa 11060 BEOGRAD-PALILULA 111 DaDaDaDaDa 11060 BEOGRAD-ZVEZDARA 111 DaDaDaDaDa 11060 SLANCI 11 1 Da Da Da Da Da 11070 BEOGRAD-NOVI BEOGRAD 11 1 Da Da Da Da Da 11070 BEOGRAD-ZEMUN 11 1 Da Da Da Da Da 11073 BEOGRAD-NOVI BEOGRAD 11 1 Da Da Da Da Da 11077 SURČIN 11 1 Da Da Da Da Da 11077 BEOGRAD-NOVI BEOGRAD 11 1 Da Da Da Da Da 11077 BEOGRAD-ZEMUN 11 1 Da Da Da Da Da 11080 BEOGRAD-ZEMUN 11 1 Da Da Da Da Da 11090 BEOGRAD-RAKOVICA 111 DaDaDaDaDa 11090 BEOGRAD-VOŽDOVAC 11 1 Da Da Da Da Da 11103 BEOGRAD-STARI GRAD 11 1 Da Da Da Da Da 11108 BEOGRAD-PALILULA 111 DaDaDaDaDa 11108 BEOGRAD-STARI GRAD 11 1 Da Da Da Da Da 11111 BEOGRAD-VRAČAR 111 DaDaDaDaDa 11118 BEOGRAD-VOŽDOVAC 11 1 Da Da Da Da Da 11118 BEOGRAD-VRAČAR 111 DaDaDaDaDa 11118 BEOGRAD-ZVEZDARA 111 DaDaDaDaDa 11120 BEOGRAD-VRAČAR 111 DaDaDaDaDa 11120 BEOGRAD-PALILULA 111 DaDaDaDaDa 11120 BEOGRAD-ZVEZDARA 111 DaDaDaDaDa 11126 BEOGRAD-ZVEZDARA 111 DaDaDaDaDa 11130
    [Show full text]
  • Pozicioniranost Sokobanje Na Turističkom Tržištu Srbije
    UDK: 338.48(497.11) POSLOVNA EKONOMIJA BUSINESS ECONOMICS Godina XI Stručni rad Broj I Str 253 – 271 doi:10.5937/poseko11-13733 Stefan Denda,1 istraživač-pripravnik Geografski institut "Jovan Cvijić" Srpske akademije nauka i umetnosti Jasna Stojanović,2 istraživač-pripravnik Geografski institut "Jovan Cvijić" Srpske akademije nauka i umetnosti POZICIONIRANOST SOKOBANJE NA TURISTIČKOM TRŽIŠTU SRBIJE SAŽETAK: U globalnim okvirima, turizam predstavlja jednu od najznačajnijih privrednih delatnosti. O tome svedoče podaci relevantnih međunarodnih institucija (Svetska turistička organizacija, Svetski ekonomski forum, Svetski savet za putovanja i turizam), ali i nacionalnih organa (zavodi za statistiku, turističke organizacije). Na nivou Srbije postoji veći broj destinacija, gde je Sokobanja jedan od nosilaca turističke privrede. Stoga, cilj rada je ukazati na faktore koji su uticali na formiranje ponude i poziciju Sokobanje na turističkom tržištu. Korišćena je dostupna literatura i statistički podaci, a kao dodatni metod korišćeno je anketno istraživanje sprovedeno tokom 2014. godine. Rad je podeljen na pet poglavlja. Prvi deo razmatra ulogu turizma na globalnom nivou. Drugi deo ukazuje na istorijske preduslove sokobanjskog turizma, dok se treći i četvrti deo odnose na odlike turističkog prometa i materijalnu bazu privređivanja. Poslednji deo razmatra odnos posetilaca banje prema turističkoj ponudi. Rezultati su istakli više pravilnosti: banjski turizam je jedan od vodećih turističkih proizvoda Srbije, turistički promet ima sezonske karakteristike uz dominaciju domaćih gostiju, prirodna resursna osnova je 1 [email protected] 2 [email protected] 253 S. DENDA, J. STOJANOVIĆ POZICIONIRANOST SOKOBANJE... prisutna, ali infrastruktura je zastarela, a ponuda neusaglašena sa trendovima na tržištu. Ključne reči: Sokobanja, turizam, tržište, turistički promet, usluge TURIZAM KAO GLOBALNI FENOMEN Savremena turistička delatnost je u manjoj ili većoj meri zastupljena u gotovo svim oblastima društva.
    [Show full text]
  • Region Opština Mesto Broj Vakcinacija BEOGRAD BARAJEVO
    Region Opština Mesto Broj vakcinacija BEOGRAD BARAJEVO ARNAJEVO 277 BACEVAC 20 BARAJEVO 10 BELJINA 267 BOŽDAREVAC 32 GUNCATI 79 MANIC 131 ROŽANCI 353 VELIKI BORAK 16 VRANIĆ 4 BEOGRAD-SURČIN BEČMEN 218 BOLJEVCI 5,082 DOBANOVCI 953 JAKOVO 2,132 PETROVČIĆ 462 PROGAR 1,200 SURČIN 1,234 GROCKA BEGALJICA 106 DRAŽANJ 221 KALUĐERICA 14 KAMENDOL 90 LEŠTANE 12 PUDARCI 175 RITOPEK 17 UMČARI 1,104 VRCIN 98 ŽIVKOVAC 2 LAZAREVAC ARAPOVAC 24 BAROŠEVAC 10 BARZILOVICA 34 BISTRICA 5 BRAJKOVAC 2 BUROVO 6 CVETOVAC 44 DREN 8 DUDOVICA 1,647 JUNKOVAC 100 KRUŠEVICA 8 LAZAREVAC 35 LESKOVAC 32 LUKAVICA 1 MIROSALJCI 126 PETKA 58 SOKOLOVO 129 STEPOJEVAC 172 STRMOVO 41 VELIKI CRLJENI 727 VRBOVNO 82 VREOCI 681 ZEOKE 11 ČIBUTKOVICA 215 ŠOPIĆ 24 Region Opština Mesto Broj vakcinacija BEOGRAD LAZAREVAC ŠUŠNJAR 6 ŽUPANJAC 19 MLADENOVAC AMERIC 76 BELJEVAC 87 CRKVINE 24 DUBONA 125 JAGNJILO 280 KORAĆICA 304 KOVAČEVAC 1,019 MALA VRBICA 91 MARKOVAC 266 MEĐULUŽJE 901 MLADENOVAC (SELO) 30 MLADENOVAC (VAROŠ) 34 PRUŽATOVAC 13 RABROVAC 169 RAJKOVAC 82 SENAJA 70 VELIKA IVANČA 620 VELIKA KRSNA 1,068 VLAŠKA 539 ŠEPŠIN 265 NOVI BEOGRAD NOVI BEOGRAD 80 OBRENOVAC BALJEVAC 144 BARIČ 51 BELO POLJE 129 BROVIĆ 463 DRAŽEVAC 823 DREN 288 GRABOVAC 2,901 JASENAK 5 KONATICE 859 KRTINSKA 516 LJUBINIC 1,999 MISLODIN 179 OBRENOVAC 3 ORAŠAC 716 PIROMAN 1,146 POLJANE 642 RATARI 25,450 RVATI 15 SKELA 754 STUBLINE 910 TRSTENICA 930 UROVCI 144 UŠCE 318 VELIKO POLJE 863 VUKICEVICA 407 ZABREŽJE 112 ZVECKA 428 PALILULA BORCA 43 OVCA 20 PADINSKA SKELA 37,308 Region Opština Mesto Broj vakcinacija BEOGRAD PALILULA
    [Show full text]