Discriminative Autoencoder for Feature Extraction: Application to Character Recognition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10 Oriented Principal Component Analysis for Feature Extraction
10 Oriented Principal Component Analysis for Feature Extraction Abstract- Principal Components Analysis (PCA) is a popular unsupervised learning technique that is often used in pattern recognition for feature extraction. Some variants have been proposed for supervising PCA to include class information, which are usually based on heuristics. A more principled approach is presented in this paper. Suppose that we have a pattern recogniser composed of a linear network for feature extraction and a classifier. Instead of designing each module separately, we perform global training where both learning systems cooperate in order to find those components (Oriented PCs) useful for classification. Experimental results, using artificial and real data, show the potential of the proposed learning system for classification. Since the linear neural network finds the optimal directions to better discriminate classes, the global-trained pattern recogniser needs less Oriented PCs (OPCs) than PCs so the classifier’s complexity (e.g. capacity) is lower. In this way, the global system benefits from a better generalisation performance. Index Terms- Oriented Principal Components Analysis, Principal Components Neural Networks, Co-operative Learning, Learning to Learn Algorithms, Feature Extraction, Online gradient descent, Pattern Recognition, Compression. Abbreviations- PCA- Principal Components Analysis, OPC- Oriented Principal Components, PCNN- Principal Components Neural Networks. 1. Introduction In classification, observations belong to different classes. Based on some prior knowledge about the problem and on the training set, a pattern recogniser is constructed for assigning future observations to one of the existing classes. The typical method of building this system consists in dividing it into two main blocks that are usually trained separately: the feature extractor and the classifier. -
PATTERN RECOGNITION LETTERS an Official Publication of the International Association for Pattern Recognition
PATTERN RECOGNITION LETTERS An official publication of the International Association for Pattern Recognition AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.2 • Impact Factor p.2 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.5 ISSN: 0167-8655 DESCRIPTION . Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition. Examples include: • Statistical, structural, syntactic pattern recognition; • Neural networks, machine learning, data mining; • Discrete geometry, algebraic, graph-based techniques for pattern recognition; • Signal analysis, image coding and processing, shape and texture analysis; • Computer vision, robotics, remote sensing; • Document processing, text and graphics recognition, digital libraries; • Speech recognition, music analysis, multimedia systems; • Natural language analysis, information retrieval; • Biometrics, biomedical pattern analysis and information systems; • Special hardware architectures, software packages for pattern recognition. We invite contributions as research reports or commentaries. Research reports should be concise summaries of methodological inventions and findings, with strong potential of wide applications. Alternatively, they can describe significant and novel applications -
A Wavenet for Speech Denoising
A Wavenet for Speech Denoising Dario Rethage∗ Jordi Pons∗ Xavier Serra [email protected] [email protected] [email protected] Music Technology Group Music Technology Group Music Technology Group Universitat Pompeu Fabra Universitat Pompeu Fabra Universitat Pompeu Fabra Abstract Currently, most speech processing techniques use magnitude spectrograms as front- end and are therefore by default discarding part of the signal: the phase. In order to overcome this limitation, we propose an end-to-end learning method for speech denoising based on Wavenet. The proposed model adaptation retains Wavenet’s powerful acoustic modeling capabilities, while significantly reducing its time- complexity by eliminating its autoregressive nature. Specifically, the model makes use of non-causal, dilated convolutions and predicts target fields instead of a single target sample. The discriminative adaptation of the model we propose, learns in a supervised fashion via minimizing a regression loss. These modifications make the model highly parallelizable during both training and inference. Both computational and perceptual evaluations indicate that the proposed method is preferred to Wiener filtering, a common method based on processing the magnitude spectrogram. 1 Introduction Over the last several decades, machine learning has produced solutions to complex problems that were previously unattainable with signal processing techniques [4, 12, 38]. Speech recognition is one such problem where machine learning has had a very strong impact. However, until today it has been standard practice not to work directly in the time-domain, but rather to explicitly use time-frequency representations as input [1, 34, 35] – for reducing the high-dimensionality of raw waveforms. Similarly, most techniques for speech denoising use magnitude spectrograms as front-end [13, 17, 21, 34, 36]. -
Feature Selection/Extraction
Feature Selection/Extraction Dimensionality Reduction Feature Selection/Extraction • Solution to a number of problems in Pattern Recognition can be achieved by choosing a better feature space. • Problems and Solutions: – Curse of Dimensionality: • #examples needed to train classifier function grows exponentially with #dimensions. • Overfitting and Generalization performance – What features best characterize class? • What words best characterize a document class • Subregions characterize protein function? – What features critical for performance? – Subregions characterize protein function? – Inefficiency • Reduced complexity and run-time – Can’t Visualize • Allows ‘intuiting’ the nature of the problem solution. Curse of Dimensionality Same Number of examples Fill more of the available space When the dimensionality is low Selection vs. Extraction • Two general approaches for dimensionality reduction – Feature extraction: Transforming the existing features into a lower dimensional space – Feature selection: Selecting a subset of the existing features without a transformation • Feature extraction – PCA – LDA (Fisher’s) – Nonlinear PCA (kernel, other varieties – 1st layer of many networks Feature selection ( Feature Subset Selection ) Although FS is a special case of feature extraction, in practice quite different – FSS searches for a subset that minimizes some cost function (e.g. test error) – FSS has a unique set of methodologies Feature Subset Selection Definition Given a feature set x={xi | i=1…N} find a subset xM ={xi1, xi2, …, xiM}, with M<N, that optimizes an objective function J(Y), e.g. P(correct classification) Why Feature Selection? • Why not use the more general feature extraction methods? Feature Selection is necessary in a number of situations • Features may be expensive to obtain • Want to extract meaningful rules from your classifier • When you transform or project, measurement units (length, weight, etc.) are lost • Features may not be numeric (e.g. -
Feature Extraction (PCA & LDA)
Feature Extraction (PCA & LDA) CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline What is feature extraction? Feature extraction algorithms Linear Methods Unsupervised: Principal Component Analysis (PCA) Also known as Karhonen-Loeve (KL) transform Supervised: Linear Discriminant Analysis (LDA) Also known as Fisher’s Discriminant Analysis (FDA) 2 Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given feature set Feature extraction (e.g., PCA, LDA) A linear or non-linear transform on the original feature space ⋮ ⋮ → ⋮ → ⋮ = ⋮ Feature Selection Feature ( <) Extraction 3 Feature Extraction Mapping of the original data onto a lower-dimensional space Criterion for feature extraction can be different based on problem settings Unsupervised task: minimize the information loss (reconstruction error) Supervised task: maximize the class discrimination on the projected space In the previous lecture, we talked about feature selection: Feature selection can be considered as a special form of feature extraction (only a subset of the original features are used). Example: 0100 X N 4 XX' 0010 X' N 2 Second and thirth features are selected 4 Feature Extraction Unsupervised feature extraction: () () A mapping : ℝ →ℝ ⋯ Or = ⋮⋱⋮ Feature Extraction only the transformed data () () () () ⋯ ′ ⋯′ = ⋮⋱⋮ () () ′ ⋯′ Supervised feature extraction: () () A mapping : ℝ →ℝ ⋯ Or = ⋮⋱⋮ Feature Extraction only the transformed -
Feature Extraction for Image Selection Using Machine Learning
Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2017 Feature extraction for image selection using machine learning Matilda Lorentzon Master of Science Thesis in Electrical Engineering Feature extraction for image selection using machine learning Matilda Lorentzon LiTH-ISY-EX--17/5097--SE Supervisor: Marcus Wallenberg ISY, Linköping University Tina Erlandsson Saab Aeronautics Examiner: Lasse Alfredsson ISY, Linköping University Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2017 Matilda Lorentzon Abstract During flights with manned or unmanned aircraft, continuous recording can result in a very high number of images to analyze and evaluate. To simplify image analysis and to minimize data link usage, appropriate images should be suggested for transfer and further analysis. This thesis investigates features used for selection of images worthy of further analysis using machine learning. The selection is done based on the criteria of having good quality, salient content and being unique compared to the other selected images. The investigation is approached by implementing two binary classifications, one regard- ing content and one regarding quality. The classifications are made using support vector machines. For each of the classifications three feature extraction methods are performed and the results are compared against each other. The feature extraction methods used are histograms of oriented gradients, features from the discrete cosine transform domain and features extracted from a pre-trained convolutional neural network. The images classified as both good and salient are then clustered based on similarity measures retrieved using color coherence vectors. One image from each cluster is retrieved and those are the result- ing images from the image selection. -
An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods
An Empirical Comparison of Pattern Recognition, Neural Nets, and Machine Learning Classification Methods Sholom M. Weiss and Ioannis Kapouleas Department of Computer Science, Rutgers University, New Brunswick, NJ 08903 Abstract distinct production rule. Unlike decision trees, a disjunctive set of production rules need not be mutually exclusive. Classification methods from statistical pattern Among the principal techniques of induction of production recognition, neural nets, and machine learning were rules from empirical data are Michalski s AQ15 applied to four real-world data sets. Each of these data system [Michalski, Mozetic, Hong, and Lavrac, 1986] and sets has been previously analyzed and reported in the recent work by Quinlan in deriving production rules from a statistical, medical, or machine learning literature. The collection of decision trees [Quinlan, 1987b]. data sets are characterized by statisucal uncertainty; Neural net research activity has increased dramatically there is no completely accurate solution to these following many reports of successful classification using problems. Training and testing or resampling hidden units and the back propagation learning technique. techniques are used to estimate the true error rates of This is an area where researchers are still exploring learning the classification methods. Detailed attention is given methods, and the theory is evolving. to the analysis of performance of the neural nets using Researchers from all these fields have all explored similar back propagation. For these problems, which have problems using different classification models. relatively few hypotheses and features, the machine Occasionally, some classical discriminant methods arecited learning procedures for rule induction or tree induction 1 in comparison with results for a newer technique such as a clearly performed best. -
Unsupervised Speech Representation Learning Using Wavenet Autoencoders Jan Chorowski, Ron J
1 Unsupervised speech representation learning using WaveNet autoencoders Jan Chorowski, Ron J. Weiss, Samy Bengio, Aaron¨ van den Oord Abstract—We consider the task of unsupervised extraction speaker gender and identity, from phonetic content, properties of meaningful latent representations of speech by applying which are consistent with internal representations learned autoencoding neural networks to speech waveforms. The goal by speech recognizers [13], [14]. Such representations are is to learn a representation able to capture high level semantic content from the signal, e.g. phoneme identities, while being desired in several tasks, such as low resource automatic speech invariant to confounding low level details in the signal such as recognition (ASR), where only a small amount of labeled the underlying pitch contour or background noise. Since the training data is available. In such scenario, limited amounts learned representation is tuned to contain only phonetic content, of data may be sufficient to learn an acoustic model on the we resort to using a high capacity WaveNet decoder to infer representation discovered without supervision, but insufficient information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the to learn the acoustic model and a data representation in a fully kind of constraint that is applied to the latent representation. supervised manner [15], [16]. We compare three variants: a simple dimensionality reduction We focus on representations learned with autoencoders bottleneck, a Gaussian Variational Autoencoder (VAE), and a applied to raw waveforms and spectrogram features and discrete Vector Quantized VAE (VQ-VAE). We analyze the quality investigate the quality of learned representations on LibriSpeech of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately re- [17]. -
Training Generative Adversarial Networks in One Stage
Training Generative Adversarial Networks in One Stage Chengchao Shen1, Youtan Yin1, Xinchao Wang2,5, Xubin Li3, Jie Song1,4,*, Mingli Song1 1Zhejiang University, 2National University of Singapore, 3Alibaba Group, 4Zhejiang Lab, 5Stevens Institute of Technology {chengchaoshen,youtanyin,sjie,brooksong}@zju.edu.cn, [email protected],[email protected] Abstract Two-Stage GANs (Vanilla GANs): Generative Adversarial Networks (GANs) have demon- Real strated unprecedented success in various image generation Fake tasks. The encouraging results, however, come at the price of a cumbersome training process, during which the gen- Stage1: Fix , Update 풢 풟 풢 풟 풢 풟 풢 풟 erator and discriminator풢 are alternately풟 updated in two 풢 풟 stages. In this paper, we investigate a general training Real scheme that enables training GANs efficiently in only one Fake stage. Based on the adversarial losses of the generator and discriminator, we categorize GANs into two classes, Sym- Stage 2: Fix , Update 풢 풟 metric GANs and풢 Asymmetric GANs,풟 and introduce a novel One-Stage GANs:풢 풟 풟 풢 풟 풢 풟 풢 gradient decomposition method to unify the two, allowing us to train both classes in one stage and hence alleviate Real the training effort. We also computationally analyze the ef- Fake ficiency of the proposed method, and empirically demon- strate that, the proposed method yields a solid 1.5× accel- Update and simultaneously eration across various datasets and network architectures. Figure 1: Comparison풢 of the conventional풟 Two-Stage GAN 풢 풟 Furthermore,풢 we show that the proposed풟 method is readily 풢 풟 풢 풟 풢 풟 training scheme (TSGANs) and the proposed One-Stage applicable to other adversarial-training scenarios, such as strategy (OSGANs). -
Time Series Feature Extraction for Industrial Big Data (Iiot) Applications
Time Series Feature Extraction for Industrial Big Data (IIoT) Applications [1] Term paper for the subject „Current Topics of Data Engineering” In the course of studies MSc. Data Engineering at the Jacobs University Bremen Markus Sun Born on 07.11.1994 in Achim Student/ Registration number: 30003082 1. Reviewer: Prof. Dr. Adalbert F.X. Wilhelm 2. Reviewer: Prof. Dr. Stefan Kettemann Time Series Feature Extraction for Industrial Big Data (IIoT) Applications __________________________________________________________________________ Table of Content Abstract ...................................................................................................................... 4 1 Introduction ...................................................................................................... 4 2 Main Topic - Terminology ................................................................................. 5 2.1 Sensor Data .............................................................................................. 5 2.2 Feature Selection and Feature Extraction...................................................... 5 2.2.1 Variance Threshold.............................................................................................................. 7 2.2.2 Correlation Threshold .......................................................................................................... 7 2.2.3 Principal Component Analysis (PCA) .................................................................................. 7 2.2.4 Linear Discriminant Analysis -
Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards
agronomy Article Machine Learning Feature Extraction Based on Binary Pixel Quantification Using Low-Resolution Images for Application of Unmanned Ground Vehicles in Apple Orchards Hong-Kun Lyu 1,*, Sanghun Yun 1 and Byeongdae Choi 1,2 1 Division of Electronics and Information System, ICT Research Institute, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; [email protected] (S.Y.); [email protected] (B.C.) 2 Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea * Correspondence: [email protected]; Tel.: +82-53-785-3550 Received: 20 November 2020; Accepted: 4 December 2020; Published: 8 December 2020 Abstract: Deep learning and machine learning (ML) technologies have been implemented in various applications, and various agriculture technologies are being developed based on image-based object recognition technology. We propose an orchard environment free space recognition technology suitable for developing small-scale agricultural unmanned ground vehicle (UGV) autonomous mobile equipment using a low-cost lightweight processor. We designed an algorithm to minimize the amount of input data to be processed by the ML algorithm through low-resolution grayscale images and image binarization. In addition, we propose an ML feature extraction method based on binary pixel quantification that can be applied to an ML classifier to detect free space for autonomous movement of UGVs from binary images. Here, the ML feature is extracted by detecting the local-lowest points in segments of a binarized image and by defining 33 variables, including local-lowest points, to detect the bottom of a tree trunk. We trained six ML models to select a suitable ML model for trunk bottom detection among various ML models, and we analyzed and compared the performance of the trained models. -
Towards Reproducible Meta-Feature Extraction
Journal of Machine Learning Research 21 (2020) 1-5 Submitted 5/19; Revised 12/19; Published 1/20 MFE: Towards reproducible meta-feature extraction Edesio Alcobaça [email protected] Felipe Siqueira [email protected] Adriano Rivolli [email protected] Luís P. F. Garcia [email protected] Jefferson T. Oliva [email protected] André C. P. L. F. de Carvalho [email protected] Institute of Mathematical and Computer Sciences University of São Paulo Av. Trabalhador São-carlense, 400, São Carlos, São Paulo 13560-970, Brazil Editor: Alexandre Gramfort Abstract Automated recommendation of machine learning algorithms is receiving a large deal of attention, not only because they can recommend the most suitable algorithms for a new task, but also because they can support efficient hyper-parameter tuning, leading to better machine learning solutions. The automated recommendation can be implemented using meta-learning, learning from previous learning experiences, to create a meta-model able to associate a data set to the predictive performance of machine learning algorithms. Al- though a large number of publications report the use of meta-learning, reproduction and comparison of meta-learning experiments is a difficult task. The literature lacks extensive and comprehensive public tools that enable the reproducible investigation of the differ- ent meta-learning approaches. An alternative to deal with this difficulty is to develop a meta-feature extractor package with the main characterization measures, following uniform guidelines that facilitate the use and inclusion of new meta-features. In this paper, we pro- pose two Meta-Feature Extractor (MFE) packages, written in both Python and R, to fill this lack.