Troubleshooting Outboard Motor Magneto Ignitions Application Note

Total Page:16

File Type:pdf, Size:1020Kb

Troubleshooting Outboard Motor Magneto Ignitions Application Note Troubleshooting Outboard Motor Magneto Ignitions Application Note Coil 23 SERIES II MULTIMETER kΩ Introduction Flywheel 10 20 30 40 OFF V Your outboard motor won’t start. V 300mV Yes, its been in storage for awhile but it was running well when you Primary Secondary A A left it. Should it go to the repair PRESS RANGE AUTORANGE 1 SEC shop? The shop will do a good job TOUCH HOLD 10A V but they’re always busy and the ! 100V 300 COM mA 750V repair will probably take two FUSED weeks —remember your out of town guests want to go fishing tomorrow. Isn’t it time you learned how to Breaker fix it yourself? You suspect the igni- Points tion since that’s what went bad last time. Will you need the special test equipment called out in the repair Condenser manual? NO! This application note will show you, in a few simple Engine Block steps, how to pinpoint magneto ignition troubles quickly. All you will need is a few mechanics’ tools and a good quality digital multimeter. Won’t start scenario Troubleshooting procedure You can justify the multimeter Now let’s get down to cases with We will assume you have already because it will do double duty for the dead engine. In order to start, tried the normal starting procedure, your other electrical troubleshooting the engine needs three critical i.e., turned the engine over a num- tasks, including the battery and items: a) proper amount of fuel/air ber of times, first with choke closed charging system, trailer lights, mixture, b) properly timed spark and then open. corrosion protection system, and and c) some compression. If it won’t other electrical systems in either start, chances are that one or more Spark plug check your house or boat. of these is missing. The trouble- The ignition troubleshooting Remove the cowling (if necessary) shooting logic is straightforward: procedure that follows can be used to gain access to the spark plugs. find out which critical items are for any small one or two cylinder For a twin cylinder engine, label missing and why. gasoline engine that employs a the spark plug wires so that they Before getting into the actual breakerpoint magneto ignition; for can be replaced in the correct procedure, verify that the fuel tank example your lawn mower, order. Pop the wires off and has sufficient quantity of fresh fuel chainsaw, generator, pressure unscrew the spark plug(s). Keep mixture and if your engine has an washer etc. track of which plug came out of electric starter, use the dc volts each cylinder. function on your multimeter to Now, examine each plug care- check the battery voltage and the fully. This is like palm reading; the ohms function to check the cables condition of the plug tip can tell a for loose or corroded connections. story about what is going on in With reference to the ignition each cylinder. If the plugs are wet system, here is a list of the critical with gasoline, fuel is undoubtedly components listed in the order of reaching the cylinders. their likelihood of failing: If the plugs are dry, the opposite Spark Plug, Breaker Points, Coil, HV is true. Look for a blockage in the Wire, Condenser and fuel system or a bad fuel pump in a Flywheel Magnet remote tank configuration. If the plug(s) are fouled with and coil to the engine block. This Coil carbon and/or oil, several things can be checked without taking 23 SERIES II MULTIMETER could be wrong: The spark to the apart the magneto as follows: Set kΩ Flywheel 10 20 30 40 Ω OFF V plug(s) is weak or nonexistent, the the multimeter into the ohms ( ) V spark plug heat range is too cold, function. Use the range button to 300mV or the engine has been run for long manually select the 40 kΩ range. Primary Secondary A A PRESS periods of time at low speeds (Auto ranging may not work here RANGE AUTORANGE 1 SEC TOUCH HOLD possibly with an incorrect fuel or due the inductance of the coil). 10A V ! 100V 300 COM fuel/oil mixture. In the case of Now, touch one probe tip to the mA 750V FUSED multi-cylinder engines, if only one engine block and the other to the plug shows difficulties, the problem metal connector inside the plug Breaker is likely to be a weak spark from wire cap. The meter should read Points the ignition system. the resistance of the coil and HV In any event, the next step is to wire in series. Good readings will Condenser check actual spark plug operation. range from 3 kΩ to 15 kΩ. Higher If new plugs are available, use readings mean a poor connection, Engine Block them for the next test. If not, clean which typically occurs either where the old ones as follows: using a the HV wire connects to the coil or Figure 1: HV wire resistance/continuity test sharp object such as the point of a at the other end where the HV wire Coil safety pin or a straightened fish connects to the spark plug clip SERIES II MULTIMETER 23 hook, scrape off the deposits on the inside the cap. A reading of OL kΩ 10 20 30 40 insulator that surrounds the center means an open circuit or break in OFF V V electrode. Dig down between the the electrical path. If a bad reading 300mV insulation and sidewall and remove is indicated, double check to make Primary Secondary A A PRESS as much carbon as possible. Now, sure you are making a good con- RANGE AUTORANGE 1 SEC TOUCH HOLD wash out any remaining oil or nection with both test leads. 10A V ! 100V 300 COM mA 750V carbon particles with a nonconduc- FUSED tive solvent such as paint thinner or Coil and HV wire continuity unmixed gasoline. Allow the plug to test for two-cylinder engines air dry; blow on it if necessary. If you are testing a 2-Cylinder, Next, gap each plug by tapping 2-Cycle engine (mixed fuel) then or bending the outer electrode. If perform the test as above for each you don’t know what the recom- cylinder individually. Look for a mended gap is, use 0.025" (a bank correlation between a bad reading credit card is typically .030"). Test Figure 2: Resistance/continuity test for 2-cylinder, (OL) and a fouled spark plug on the each plug and HV wire combination 4-cycle engines same cylinder. by connecting the wire to the plug If the engine is a 4-Cycle model and laying the plug on the engine (unmixed fuel) such as a Honda or Coil block where the gap can be seen. Onan, the test is performed slightly The plug outer body needs to make differently as shown in Figure 2. electrical contact to the engine Here we will be looking for conti- block as it does when it is screwed nuity from one spark plug clip to in place. the other since there is only one Now, turn the engine over at secondary coil which is not normal cranking speed and watch Primary connected to the engine block. An Secondary for a spark. If you are in bright sun, open spark path will kill the spark you may have to shade the plug to to both cylinders. see the spark. If this test shows no spark or a weak spark, troubles HV circuit repairs with the breaker points or coil inside the magneto are likely. A break in the HV circuit can occur in several places as shown in Coil and HV wire Figure 3. resistance/continuity test If the poor connection or open Figure 3: Possible locations of breaks in for one-cylinder engines circuit occurs at the spark plug clip, secondary HV circuit you may be able to repair it without The next test checks for a continu- taking anything else apart. If the ous path for the spark through the problem is located inside the mag- HV wire and the ignition coil. Refer neto, it will probably be necessary to the electrical diagram in Figure 1. to remove the flywheel. Note that for a one cylinder engine there is a direct electrical path from the plug cap through the HV wire, 2 Fluke Corporation Troubleshooting Outboard Motor Magneto Ignitions Coil The preferred cleaning method 23 SERIES II MULTIMETER is to scrape the contact surfaces with a sharp carpet-layer’s knife, 10 20 30 40 Flywheel OFF V followed by a wiping with solvent V 300mV on a clean cloth. Filing will some- times work but there is a risk of Primary Secondary A A PRESS damaging the underlying metal RANGE AUTORANGE 1 SEC TOUCH HOLD 10A V which will shorten the life of the ! 100V 300 COM mA 750V contacts. In any event do not use FUSED sandpaper. The grit will imbed itself in the contact metal, render- Breaker Points ing the points useless. If you want a quick fix to get the engine running, try the “old-timers Condenser Engine point cleaning trick” as follows: Block With the crank shaft positioned so that the points are closed, pry the Figure 4: Breaker point contact resistance test breaker arm open and insert a clean business card between the Breaker point test Measure the contact resistance contact surfaces. Release the breaker arm so that the points grip The breaker points on a magneto as follows: place the multimeter in the end of the card and then drag ignition are often located under the the Ω function and hold the probe the card through its width, wiping flywheel.
Recommended publications
  • Service Manual
    SERVICE MANUAL GRASS TRIMMERS / BRUSH CUTTERS • TROUBLE SHOOTING • SERVICE / TORQUE LIMITS • TECHNICAL DATA 1028 4th Street S.W. • Building B • Auburn, WA 98001 • PH: 253-333-1200 • F: 253-333-1212 • tanakapowerequipment.com Introduction How To Use Your Service Manual Replacement Parts This Service Manual is arranged for quick, easy reference When replacement parts are required, use only approved and is divided into numbered sections. parts. Failure to do somayresult in products malfunction and possible injury to operator and/or bystander. NOTE: Read all information for servicing a part or system NOTE:All referenceto "Left","Right","Front" and "Back" before repair work is started to avoid needless are given from operators position. assembly. NOTE: The descriptions and specifications contained in this manual were in effect at the time this manual Preparation For Service was approved for printing. We reserve the right to Proper preparation is very important for efficient service discontinue models without notice and without work. A clean work area at the start of each job will allow incurring ob!igation. The equipment identified as you to perform the repair as easily and quickly as possible, either standard or optional and the various illustra- and reduce incidence of misplace tools and parts. A unit tions may not all be applicab!e to your unit. If you that is excessively dirty should be cleaned before work have question, always check with your dealer. starts. Cleaning will occasionally uncover trouble sources. Tools, instruments and parts needed for the job should be gathered before work is started. Interrupting a job to locate tools or parts is a needless delay.
    [Show full text]
  • Electronic Ignition
    Electrical 6 6 For the Dealer Nearest You, Call: 800-729-3332 6.01 Electronic Ignition Crane Multi-Spark Ignition for Twin Cam 88® Models Crane ‘HI-4’ Ignition, Coil and Plug Wire Kit Electrical • Works with stock coil for outstanding performance on any bike Includes Crane HI-4 single fire ignition, single fire performance dual coil • Stock crankshaft position sensor is used to establish accurate base and reactive spiral core silicone spark plug wires. A complete modern timing. Initial timing can be set from -5° to +4°, rear cylinder timing can ignition kit for Big Twins from 1970 thru 1999 (except Twin Cam 88® be offset from -5° to +4°. Timing is easily adjusted via a rotary switch models), and Sportster® models 1971 thru 2003. 6 • For maximum horsepower, torque and reliability, contains ten advance 24548 Complete kit . .$425.89 curve families, selected via rotary switch. You can select the exact Note: Sportster® models from 1971 thru 1982 and Big Twins from 1970 thru 1983 require that advance curve you want for engines that are from factory-stock to mechanical advance units and point ignitions, or early electronic ignitions and rotors be wildly modified replaced by an OEM 32402-83 ignition timing rotor (CC #59725). • User programmable advance curves easily created on or off the bike • Requires HI-4 Powerlink Programming software to program this ignition (CC #640271 sold separately) • Full multi-spark performance; up to nine sparks at idle, three sparks up to 6,000 rpm • Easier starting, hot or cold, plus better low-speed driveability and off-idle response.
    [Show full text]
  • Internal Combustion Engines
    Lecture-16 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Introduction The combustion in a spark ignition engine is initiated by an electrical discharge across the electrodes of a spark plug, which usually occurs from 100 to 300 before TDC depending upon the chamber geometry and operating conditions. The ignition system provides a spark of sufficient intensity to ignite the air-fuel mixture at the predetermined position in the engine cycle under all speeds and load conditions. 2 Introduction – contd. In a four-stroke, four cylinder engine operating at 3000 rpm, individual cylinders require a spark at every second revolution, and this necessitates the frequency of firing to be (3000/2) x 4 = 6000 sparks per minute or 100 sparks per second. This shows that there is an extremely short interval of time between firing impulses. 3 Introduction – contd. The internal combustion engines are not capable of starting by themselves. Engines fitted in trucks, tractors and other industrial applications are usually cranked by a small starting engine or by compressed air. Automotive engines are usually cranked by a small electric motor, which is better known as a starter motor, or simply a starter. The starter motor for SI and CI engines operates on the same principle as a direct current electric motor. 4 Ignition System -Requirements It should provide a good spark between the electrodes of the plugs at the correct timing The duration
    [Show full text]
  • Assembly Instructions for GUZZI Induktive on Dynamo
    Assembly Instructions for GUZZI Induktive on dynamo E_MG_PB_5F_08 7. Version (c)Sep.2005 Parts List: Ignition box Pickup with 2 screws Rotor with 6 washers Cable binder Ignition coil Ignition cable The Power Block ignition system is far superior to conventional ignitions that usually achieve double the ignition tension, double the ignition energy, as well as double the spark duration. The adjustment of the ignition timing is worked out by a digital High Speed Microprocessor, with 16bit resoloution (65536 points) for each single revolution. The Signal conditioning as well as the ignition amps control are also carried out digitally, to achieve maximum efficiency with a minimum loss. The necessary D-Well time of the ignition coils is worked out digitally to achieve maximum energy saving. The output requirements of the ignition system (module + ignition coil) is approximately 17W with 1000 RPM and approximately 67W with 5000 RPM. The full performance of our Power Block ignitions is only possible with SILENT HEKTIK ignition coils, because the ignition curves for the relevant ignition energy as well as tensions are tuned and the D-Well timing on the technical details of the coils are cut. With unsuitable or inadequate ignition coils, not only does the gaurantee expire , there will also be bad trottle responce; bad coldstart or perhaps missfire: SAFETY PRECAUTIONS AND NOTICES Caution High Tension! Danger ! Mortal danger ! To avoid injury or destruction of the electronic, attention should be paid to the following when working on vehichles with full electronic digital high energy ignition systems: - Read the assembly instructions carefully and completely and follow the instructions.
    [Show full text]
  • All About Ignition Coils | BERU
    Ignition Technology Diesel Cold-Start Technology Sensors All about ignition coils Technical Information Beruparts.eu BERU® is a registered trademark of BorgWarner TABLE OF CONTENTS TABLE OF CONTENTS TRUSTED TECHNOLOGY TRUSTED TECHNOLOGY 3 OVER 400 IGNITION COILS TYPES FOR MORE THAN 12.500 THE SPARK-IGNITION ENGINE 5 DIFFERENT VEHICLE TYPES Operation of ignition coils in the spark-ignition engine 5 Requirements placed on a modern ignition coils 6 BERU Ignition Coils are developed, tested and built in Western Europe, Asia and Mexico by BorgWarner IGNITION COILS DESIGN to the OE specifications and quality standards. BERU offers a large range of Ignition Technologies for petrol AND MODE OF OPERATION 7 engines. Ignition technology terminology 7 Spark energy 9 BorgWarner supplies OEM's with ignition coils for How many ignition sparks does an engine need? 9 nearly all significant European volume applications. The company currently offers a range of over IGNITION COILS TYPES 400 ignition coils to the maintenance and repair markets – needless to say in original equipment AND SYSTEMS 10 quality. Today the market penetration of the range Canister-type ignition coils 10 in VW vehicles is 99%, in BMW Group vehicles Electronic distributor ignition coils 11 96%, in the VW Group as a whole 95% – and Double spark ignition coils 12 today the range is being continuously extended in Ignition coil rails 13 accordance with market requirements. BERU QUALITY Plug top- / pencil- / Smart- coils 13 • Products are designed by IGNITION COIL – PRODUCTION 16 BorgWarner
    [Show full text]
  • SERVICE INSTRUCTION SK-SI006 Rev NC Page 1 of 7
    SERVICE INSTRUCTION SK-SI006 Rev NC Page 1 of 7 EFFECTIVE DATE: This Service Instruction is effective August 23, 2021 SUBJECT: IGNITION COIL BRACKET REPLACEMENT MODELS AFFECTED: CCK-2000 AND CCX-2000 S/N 0001 THRU 0114 COMPLIANCE TIME: This bracket replacement is optional and is left to the sole discretion of the owner / operator / builder of the Experimental Amateur-Built aircraft, unless replacement is called for as part of other service document(s). The shape and mounting pattern of the ignition coils on CC363i engines was revised due to Lightspeed Engineering supplier changes following the S/N range above. Should it be necessary, this document is provided to guide retrofit installation of the revised mounting bracket which is compatible with either style ignition coil. PURPOSE: To replace the original ignition coil bracket with a revised bracket that is compatible with both original and newer style ignition coils. WARRANTY: This change is optional, and is not considered a warranty item. PARTS LIST : PART DESCRIPTION QTY QTY (original coils) (new coils) SK50369-001 Weldment, Intake Hanger 1 1 SK51368-003 Bushing 8 - SK51368-001 Bushing - 8 AN960-416 Washer - 8 AN960-10 Washer 8 - AN936-A416 Lock Washer 4 4 AN380-2-2 Cotter Pin 1 1 AN363-1032 Nut 4 - AN363-428 Nut - 4 AN4-30A Bolt - 4 AN3-24A Bolt 4 - SP55020-117 Straight Spade Connectors - 1 (pack of 8) INSTRUCTIONS: Form #: EN-555 Rev B, 01-23-2015 Cub Crafters, Inc. | 1918 South 16th Avenue | Yakima, Washington 98903 | p 509.248.9491 | cubcrafters.com SERVICE INSTRUCTION SK-SI006 Rev NC Page 2 of 7 1.
    [Show full text]
  • Phys E-1B the Physics of the Automotive Ignition System Spring 2008
    Phys E-1b The Physics of the Automotive Ignition System Spring 2008 I. INTRODUCTION This laboratory exercise (1) explores the physics of automotive ignition systems used on vehicles for about half a century until the 1980’s and, (2) introduces more modern transistorized systems. The main job of the ignition system is to supply electricity to the spark plugs so that they can ignite the fuel-air mixture in the cylinder. In our experiment we will apply concepts such as Faraday induction, RL circuits (current build-up and decay), back emf, step-up (low- voltage to high-voltage) transformers, RLC circuits (resonance), and transistors (for switching currents). Keep in mind that whenever we speak of voltage, we are talking about a potential difference — the difference in potential between two points of interest in the circuit, one of which is usually what we call ground. In the process of understanding the underlying physics principles, you should also get an appreciation for what’s going on under the hood of your car and answer the question, “How do you get a 30,000-volt spark from a battery that supplies only 12 volts?” The diagram in Figure 1 depicts the elements of a very basic ignition circuit that provides the high voltage necessary to produce a spark in the spark plug. It consists of 1) a battery, 2) a series resistor, 3) the ignition coil, 4) points (switch contacts), and a capacitor (called a condenser in old automotive repair manuals). Notice the symbol for ground in the circuit diagrams — most voltage measurements are with respect to ground.
    [Show full text]
  • Model 4100 Installation Guide
    Model 4100 Installation Guide © 2004 Directed Electronics, Inc. Vista, CA N831002 06-04 table of contents what is included . 3 passlock I and passlock II (PL-1 and PL-2) . 22 warning! safety first . 4 optional anti-grind relay . 23 installation points to remember . 5 door lock wiring guide . 24 type A: (+) 12V pulses from the switch to the . finding the wires you need . 6 factory relays . 24 finding the starter wire . 6 type B: (-) pulses from the switch to the . obtaining constant 12V . 6 factory relays . 25 finding the 12V switched ignition wire . 7 type C: reversing polarity . 26 finding the accessory wire. 7 type D: after-market actuators . 27 finding a (+) parking light wire . 8 type E: mercedes-benz and audi . finding the wait-to-start bulb wire for diesels . 9 (1985 & newer) . 27 finding the tachometer wire . 9 type F: one-wire system . 28 primary harness (H1) wiring diagram . 10 type G: positive (+) multiplex . 28 type H: negative (-) multiplex . 29 4-pin satellite harness diagram . 10 programming jumpers. 30 heavy gauge relay satellite wiring diagram . 11 tach threshold on/off . 31 door lock harness, 3-pin connector . 11 light flash (+)/(-) . 31 remote start harness (H2) wiring diagram . 11 plug-in program switch . 31 primary harness (H1), 9-pin connector . 12 transmitter/receiver learn routine . 32 relay key switch interface . 16 tach learning . 34 to learn the tach signal . 34 remote start harness (H2), 5-pin connector. 17 operating settings learn routine . 34 neutral safety switch interface . 18 general motors trucks, SUVs, and column . features menu. 36 shifting passenger cars .
    [Show full text]
  • Spark Energy and Transfer Efficiency Analyses on Various Transistor Coil Ignition Systems
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 5-11-2018 Spark Energy and Transfer Efficiency Analyses onarious V Transistor Coil Ignition Systems Hua Zhu University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Zhu, Hua, "Spark Energy and Transfer Efficiency Analyses onarious V Transistor Coil Ignition Systems" (2018). Electronic Theses and Dissertations. 7456. https://scholar.uwindsor.ca/etd/7456 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Spark Energy and Transfer Efficiency Analyses on Various Transistor Coil Ignition Systems By Hua Zhu A Thesis Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2018 © 2018 Hua Zhu Spark Energy and Transfer Efficiency Analyses on Various Transistor Coil Ignition Systems By Hua Zhu APPROVED BY: ______________________________________________ X.
    [Show full text]
  • Charge Stratification for an Internal Combustion Engine
    CHARGE STRATIFICATION FOR AN INTERNAL COMBUSTION ENGINE A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering (Mechanical) in the University of Canterbury by CHRISTIAN CHANDRAKUMAR ZAVIER Department of Mechanical Engineering University of Canterbury 1991 To My Mother CONTENTS PAGE ABSTRACT (i) ACKNOWLEDGEMENTS (iii) LIST OF ABBREVIATIONS (iv) UST OF TABLES (vi) LIST OF PLATES (vii) LIST OF FIGURES (viii) CHAPTER 1 : INTRODUCTION 1.1 Introduction 1 1.2 Fuel economy 1 1.3 Exhaust emissions 2 1.4 Lean burn engines 10 1.5 Introduction to the present work 17 CHAPTER 2 : LITERATURE REVIEW 2.1 Introduction 23 2.2 Basic principle of charge stratification 23 2.3 Stratified charge engines 24 2.4 Development of stratified charge engines 24 2.5 Flame propagation in a stratified charge mixture 32 2.6 Effect of air motion on a stratified charge engine performance 35 2.7 Pollutant formation in stratified charge engines 37 2.8 Fuel economy results with stratified charge engines 41 2.9 Exhaust emission results of stratified charge engines 42 CHAPTER 3: EXPERIMENTAL APPARATUS 3.1 Apparatus for the engine combustion experiments 44 3.2 Apparatus for the combustion chamber simulation 50 CHAPTER 4 : EXPERIMENTAL PROCEDURE 4.1 Combustion experiments 61 4.2 Combustion chamber simulation 68 CHAPTER 5: DATA ANALYSIS 5.1 Nomenclature 79 5.2 Combustion experiments 81 5.3 Combustion chamber simulation 86 CHAPTER 6: RESULTS AND DISCUSSION 6.1 General 87 6.2 Experimental results 88 6.3 Performance optimisation study 89 6.4 Engine
    [Show full text]
  • Xvi-8511-1 85.11
    85.11 85.11 - Electrical ignition or starting equipment of a kind used for spark-ignition or compression-ignition internal combustion engines (for example, ignition magnetos, magneto-dynamos, ignition coils, sparking plugs and glow plugs, starter motors); generators (for example, dynamos, alternators) and cut-outs of a kind used in conjunction with such engines. 8511.10 - Sparking plugs 8511.20 - Ignition magnetos; magneto-dynamos; magnetic flywheels 8511.30 - Distributors; ignition coils 8511.40 - Starter motors and dual purpose starter-generators 8511.50 - Other generators 8511.80 - Other equipment 8511.90 - Parts This heading covers electrical starting or ignition equipment and appliances for internal combustion engines of any kind (piston or other types), whether for use in motor cars, aircraft, boats or the like, or for stationary engines. It also covers generators and cut-outs for use in conjunction with such internal combustion engines. The heading includes : (A) Sparking plugs. These consist of a central insulated electrode and a point (or points) attached to the casing. The casing is partly threaded at its base for screwing it into the cylinder-head, and there is a terminal at the top of the central electrode for connection to the source of current. When a high voltage is applied to the central electrode a spark jumps between that electrode and the point or points and is used for igniting the explosive mixture in the cylinder. (B) Ignition magnetos (including magneto-dynamos). These are used to provide the necessary high tension voltage to be applied to the sparking plugs of an internal combustion engine; they are used mainly for racing cars, tractors, aircraft, motor-boat or motor-cycle engines.
    [Show full text]
  • Automotive Ignition Coil: Progress Through Efficiency
    Automotive Ignition Coil: Progress Through Efficiency he automotive ignition sys- tem is crucial to the internal Tcombustion engine’s operation and efficiency. At the heart of the entire ignition system is the ignition coil. To understand how ignition coils operate, it is important to have a general understanding of the basic principles of vehicle electronics. Direct Current (DC) vs. Alternating Current (AC) The primary winding of the For many years, this interruption ignition coil is wound with a small of the primary current was accom- number of turns creating a small plished by mechanically opening resistance. Applying battery volt- a contact called the “points” in a age to this coil causes a sizable DC synchronized sequence to send current to flow. The secondary coil high voltage pulses through a rotary has a much larger number of turns switch called the “distributor” to the and therefore acts as a step-up sparkplugs. One of the drawbacks of transformer. Rather than operating this process was that the interruption on AC voltages, this secondary of current in the primary coil generat- coil is designed to produce a large ed an inductive back-voltage in that voltage spike when the current in coil which tended to cause sparking the primary coil is interrupted. Since across the points. The system was the induced secondary voltage is improved by placing a sizable capac- proportional to the rate of change of itor across the contacts so that the the magnetic field through it, opening voltage surge tended to charge the a switch quickly in the primary circuit capacitor rather than cause destruc- FARADAY’S LAW AND to drop the current to zero will gener- tive sparking across the contacts.
    [Show full text]