Nuclear Physics for Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Physics for Medicine Nuclear Physics European Collaboration Committee (NuPECC) Nuclear Physics for Medicine European Science Foundation (ESF) Nuclear Physics European Collaboration The European Science Foundation (ESF) was Committee (NuPECC) established in 1974 to provide a common platform NuPECC is an Expert Committee of the European for its Member Organisations to advance European Science Foundation. The aim of NuPECC is to research collaboration and explore new directions for strengthen collaboration in nuclear science by research. It is an independent organisation, owned by promoting nuclear physics, and its trans-disciplinary 66 Member Organisations, which are research funding use and application, in collaborative ventures between organisations, research performing organisations European research groups, and particularly those from and academies from 29 countries. ESF promotes countries linked to the European Science Foundation collaboration in research itself, in funding of research (ESF). NuPECC encourages the optimal use of a and in science policy activities at the European level. network of complementary facilities across Europe, Currently ESF is reducing its research programmes provides a forum for discussing the provision of future while developing new activities to serve the science facilities and instrumentation, and advises and makes community, including peer review and evaluation recommendations to the ESF and other bodies on the services. development, organisation, and support of European nuclear research, particularly on new projects. The www.esf.org Committee is supported by its subscribing institutions which are, in general, member organisations of the ESF involved in nuclear science and research or The European Science Foundation hosts six Expert research facilities. Boards and Committees: • The European Space Sciences Committee (ESSC) www.nupecc.org • The Nuclear Physics European Collaboration Committee (NuPECC) • The European Marine Board (EMB) Nuclear Physics for Medicine edited by: • The European Polar Board (EPB) Faiçal Azaiez, Angela Bracco, Jan Dobeš, Ari Jokinen, • The Committee on Radio Astronomy Frequencies Gabriele-Elisabeth Körner, Adam Maj, Alexander (CRAF) Murphy and Piet Van Duppen • The Materials Science and Engineering Expert Committee (MatSEEC) In the statutory review of the Expert Boards For further information contact: and Committees conducted in 2011, the Review Panel concluded unanimously that all Boards and • Professor Angela Bracco Committees provide multidisciplinary scientific NuPECC Chair services in the European and in some cases global Università degli Studi di Milano framework that are indispensable for Europe’s Dipartimento di Fisica and INFN sez. Milano scientific landscape, and therefore confirmed the need Via Celoria 16 – 20133 Milano – Italy for their continuation. Tel: +39 02 50317252 The largely autonomous Expert Boards and Email: [email protected] Committees are vitally important to provide • Dr Gabriele-Elisabeth Körner in-depth and focused scientific expertise, targeted NuPECC Scientific Secretary scientific and policy advice, and to initiate strategic c/o Physik-Department E12 developments in areas of research, infrastructure, Technische Universität München environment and society in Europe. 85748 Garching – Germany Tel: +49 172 89 15 011 / +49 89 2891 2293 Email: [email protected] http://www.nupecc.org/index.php?display=staff/contacts Cover pictures: Top: Nuclei consist of protons (red) and neutrons (blue), which are each made up of three elementary quarks held together by gluons. Below: (left) Advanced approaches to high intensity laser-driven ion acceleration, see page 123. (Right) Image of an FDG-injected rat heart obtained in a small PET scanner for molecular imaging, see page 69. ISBN: 978-2-36873-008-9 Contents Foreword 3 Introduction 5 Chapter I – Hadrontherapy 9 1. Introduction 11 2. Facilities in operation and planned 14 3. Accelerators 18 4. Beam delivery 24 5. Dosimetry 27 6. Moving targets 30 7. Radiobiology 33 8. Modelling 37 9. Treatment planning 41 10. Boron neutron capture therapy 46 11. Clinical programme update in particle therapy 53 12. Outlook 56 Chapter II – Medical Imaging 59 1. Introduction 61 2. From nuclear to molecular imaging 63 3. New challenges 70 4. Interfaces 84 5. Outlook 92 Chapter III – Radioisotope Production 95 Introduction 97 1. Properties of radioisotopes for nuclear medicine 98 2. Production methods and facilities 111 3. Examples and specific topics 128 Annexes 145 Foreword l l l Nuclear physics is a coin that has two sides: basic research and applications. Without basic 3 research there would be little to be applied; applications resulting from basic research contribute to the wealth and health of society. Modern medicine benefits tremendously from nuclear physics, both for diagnosis and for therapy. Therefore NuPECC initiated this report “Nuclear Physics for Medicine”, with its three main sections: hadrontherapy, medical imaging and radioisotope production – topics that are actively and widely pursued in Europe and abroad. Following the successful model of previous NuPECC reports, conveners were engaged by NuPECC members and Working Groups were set up for the three topics. NuPECC members and in particular NuPECC liaisons have followed and discussed thoroughly the various steps necessary Nuclear Physics Medicine for to prepare this report. The draft reports were published on the NuPECC website and discussed at an open meeting in Paris on 18 November 2013. The input received from the community was incorporated, resulting in the report now at hand. We wish you enjoyable reading! Angela Bracco Gabriele-Elisabeth NuPECC Chair Körner NuPECC Scientific Secretary Introduction l l l The present report is one of the initiatives emerged leading to developments of technologi- 5 launched by NuPECC after the successful publi- cal interest. cation of its latest Long Range Plan “Perspectives In the last Long Range Plan of NuPECC, for Nuclear Physics in Europe” in 2010 (see www. issued in 2010, suggesting directions and a strat- nupecc.org/pub/lrp10/lrp2010_final_hires.pdf). egy in the field, one important recommendation Thus it represents a contribution towards fulfill- concerns applications. In particular it was stated ing the mission of this expert committee of the that further development of the nuclear physics European Science Foundation. skills base has to be pursued in view of current While most nuclear physics phenomena are far and future needs and these include of course the beyond our daily experience there is a great vari- life sciences. One important question in this con- Nuclear Physics Medicine for ety of related techniques and applications such nection is: how can nuclear physics techniques as those in medicine which have considerable improve medical diagnostics and contribute to impact on society. cancer therapy? It is on this specific question The development of nuclear physics since that we have decided to focus and thus to issue the first discovery of the atomic nucleus by this report prepared by a group of distinguished Rutherford in the early 20th century has been expert researchers, who have contributed a great intimately tied to the development of new detec- deal and at a high level, to answer to these key tion techniques, accelerators and to theoretical questions. and simulation frameworks. A large number It is important to stress that laboratories with of these have found, and will increasingly find, focus on research in accelerator-based nuclear applications in daily life, well outside the realm physics and on the related accelerator, detector, of nuclear physics and indeed of physics itself. and isotope-production technology contribute Nuclear physics methods find increased applica- (always indirectly but very often directly) to devel- tions within trans-disciplinary areas as diverse as opments in nuclear medicine. Indeed not only can energy, nuclear waste processing and transmuta- the best suited isotopes used for medical imaging tion, climate change containment, life sciences and treatment be produced and developed with and cancer therapy, environment and space, secu- those accelerators, but the techniques used by rity and monitoring, materials science, cultural nuclear physicists to peer “inside” the nucleus can heritage, arts and archaeology. Comprehensive be used to image and trace these agents inside the surveys on the impact of nuclear physics were body to study human health and diseases. issued by NuPECC in 1994 and in 2003 with two In a multidisciplinary vision, the knowledge reports on ‘Impacts and Applications of Nuclear of nuclear physics provides fundamental support Physics in Europe’ – see www.nupecc.org/ to the requests of many specialist physicians, pub/impact_applications_1994.pdf and www. such as oncologists, radiologists, radiotherapists, nupecc.org/pub/impact_applications_interac- and nuclear medicine specialists, looking to guar- tions_2002.pdf, respectively. Since then nuclear antee early detection of disease and to select the physics has progressed and new ideas have most appropriate therapeutic strategies. Life sciences projects in nuclear physics labo- driven by the use of hadrons (particles subject ratories are literally saving lives every day. This to the strong force) such as protons and atomic is commonly the case in European laboratories, nuclei (ions). This frontier in radiation therapy, which also contribute by providing consider- recognised and pursued worldwide, is illustrated able expertise
Recommended publications
  • Investigation Study Radiation Profile on a 20 Gbq Therasphere Dose Vial
    Attachment 14 NUCLEAR MEDICINE M Nordion KANATA OPERATIONS INVESTIGATION STUDY PD99099003.08 Page No: I of 4 Investigation Study Radiation Profile on a 20 GBq TheraSphere Dose Vial I Signatures Prepared by: Date: ý - Al -; Approved by:. Date: 2•-O--c "Y (Richard Decaire CAHT) Document History Date Version''• •Comments Prepared by . Reviewed by Approved by PD99099003.08 Page Investigation No: 2 of 4 Study Radiation Profile on a 20 GBq TheraSphere Dose Vial 1. INTRODUCTION The United States Nuclear Regulatory Commission had requested information to support MDS Nordion application for the registration of TheraSphere. This request is contained in a letter dated November 23, 1999 from a Dr John P. Jankovich. This report contains data collected to address question 7 parts a, b, and c. The question poised is as follows: "Regarding external radiation levels, NRC needs information on the device itself, not on the radiation levels around the patient as addressed in the application. Therefore, please specify: a. External radiation levels around the lucite vial containing the maximum dose of 20 GBq (540 mCi). Provide the data, preferably, at the surface, and at 5, 30, and 100 cm. If there are no meaningful readings at these locations, please state so. b. Provide similar external radiation levels, if any, outside the lead pot with the lucite vial inside containing a maximum dose of microspheres. c. Please specify the instrument which you used to perform the radiation profile measurements by listing the instrument manufacturers, model numbers, calibration dates, sensitivity, etc." To address these questions, information was provided from previous development work.
    [Show full text]
  • 3Rd Quarter 2001 Bulletin
    In This Issue... Promoting Colorectal Cancer Screening Important Information and Documentaion on Promoting the Prevention of Colorectal Cancer ....................................................................................................... 9 Intestinal and Multi-Visceral Transplantation Coverage Guidelines and Requirements for Approval of Transplantation Facilities12 Expanded Coverage of Positron Emission Tomography Scans New HCPCS Codes and Coverage Guidelines Effective July 1, 2001 ..................... 14 Skilled Nursing Facility Consolidated Billing Clarification on HCPCS Coding Update and Part B Fee Schedule Services .......... 22 Final Medical Review Policies 29540, 33282, 67221, 70450, 76090, 76092, 82947, 86353, 93922, C1300, C1305, J0207, and J9293 ......................................................................................... 31 Outpatient Prospective Payment System Bulletin Devices Eligible for Transitional Pass-Through Payments, New Categories and Crosswalk C-codes to Be Used in Coding Devices Eligible for Transitional Pass-Through Payments ............................................................................................ 68 Features From the Medical Director 3 he Medicare A Bulletin Administrative 4 Tshould be shared with all General Information 5 health care practitioners and managerial members of the General Coverage 12 provider/supplier staff. Hospital Services 17 Publications issued after End Stage Renal Disease 19 October 1, 1997, are available at no-cost from our provider Skilled Nursing Facility
    [Show full text]
  • Variations in the Practice of Molecular Radiotherapy and Implementation Of
    Sjögreen Gleisner et al. EJNMMI Physics (2017) 4:28 EJNMMI Physics DOI 10.1186/s40658-017-0193-4 ORIGINAL RESEARCH Open Access Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey Katarina Sjögreen Gleisner1* , Emiliano Spezi2, Pavel Solny3, Pablo Minguez Gabina4, Francesco Cicone5, Caroline Stokke6, Carlo Chiesa7, Maria Paphiti8, Boudewijn Brans9, Mattias Sandström10, Jill Tipping11, Mark Konijnenberg12 and Glenn Flux13 * Correspondence: [email protected] Abstract 1Department of Medical Radiation Physics, Clinical Sciences Lund, Background: Currently, the implementation of dosimetry in molecular radiotherapy Lund University, Lund, Sweden (MRT) is not well investigated, and in view of the Council Directive (2013/59/Euratom), Full list of author information is there is a need to understand the current availability of dosimetry-based MRT in clinical available at the end of the article practice and research studies. The aim of this study was to assess the current practice of MRT and dosimetry across European countries. Methods: An electronic questionnaire was distributed to European countries. This addressed 18 explicitly considered therapies, and for each therapy, a similar set of questions were included. Questions covered the number of patients and treatments during 2015, involvement of medical specialties and medical physicists, implementation of absorbed dose planning, post-therapy imaging and dosimetry, and the basis of therapy prescription. Results: Responses were obtained from 26 countries and 208 hospitals, administering in total 42,853 treatments. The most common therapies were 131I-NaI for benign thyroid diseases and thyroid ablation of adults. The involvement of a medical physicist (mean over all 18 therapies) was reported to be either minority or never by 32% of the responders.
    [Show full text]
  • Implantable Beta-Emitting Microspheres for Treatment of Malignant Tumors
    UnitedHealthcare® Commercial Medical Policy Implantable Beta-Emitting Microspheres for Treatment of Malignant Tumors Policy Number: 2021T0445S Effective Date: August 1, 2021 Instructions for Use Table of Contents Page Related Commercial Policy Coverage Rationale ........................................................................... 1 • Abnormal Uterine Bleeding and Uterine Fibroids Documentation Requirements......................................................... 1 Definitions ........................................................................................... 2 Community Plan Policy Applicable Codes .............................................................................. 2 • Implantable Beta-Emitting Microspheres for Treatment of Malignant Tumors Description of Services ..................................................................... 3 Clinical Evidence ............................................................................... 3 Medicare Advantage Coverage Summary U.S. Food and Drug Administration ..............................................15 • Brachytherapy Procedures References .......................................................................................15 Policy History/Revision Information..............................................18 Instructions for Use .........................................................................19 Coverage Rationale Transarterial radioembolization (TARE) using yttrium-90 (90Y) microspheres is proven and medically necessary for the following: • When used
    [Show full text]
  • Of Richard Martin on Yttrium-90 Microsphere Brachytherapy
    Page 1 of 1 As of: 2/8/18 2:05 PM Received: February 08, 2018 Status: Pending~Post PUBLIC SUBMISSION Tracking No. lk2-91du-ys8n Comments Due: February 08, 2018 Submission Type: Web Docket: NRC-2017-0215 Yttrium-90 Microsphere Brachytherapy Sources and Devices Therasphere and SIR-Spheres Comment On: NRC-2017-0215-0024 Yttrium-90 Microsphere Brachytherapy Sources and Devices TheraSphere and SIR-Spheres; Draft Guidance; Extension of Comment Period Document: NRC-2017-0215-DRAFT-0132 Comment on FR Doc# 2017-28271 Submitter Information Name: Richard Martin Organization: American Association of Physicists in Medicine General Comment See attached file(s) Attachments AAPM Comment NRC Y-90 Guidance Final RM SUNSI Review Complete Template= ADM - 013 E-RIDS= ADM-03 · Add= l.1 SCA.\), m )11 1lJ:. C) lch) K~~-t.ri11"1 MP.P ( Kris!) https://www.fdms.gov/fdms/getcontent?objectld=0900006482f01e40&format=xml&showorig=false 02/08/2018 ''l, :~:~~.::. ' ••• ·: ·.~ ••~ ~ •'<",• ··:. : •• · 1 • ~ • • • • • ' • • • j db AMERICAN ASSOCIATION ~l7ef PHYSICISTS IN MEDICINE February 8, 2018 May Ma Office of Administration Mail Stop: OWFN-2-A13 U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 RE: Request for Comment: Yttrium-90 Microsphere Brachytherapy Sources and Devices TheraSphere and SIR-Spheres Draft Guidance (NRC-2017-0215) Dear Ms. Ma: The American Association of Physicists in Medicine (AAPM)1 is pleased to submit comments to the U.S. Nuclear Regulatory Commission (NRC) regarding Yttrium-90 Microsphere Brachytherapy Sources and Devices TheraSphere and SIR-Spheres Draft Licensing Guidance (Revision 10). The AAPM commends the NRC on its work in providing the NRC with a set of standard criteria for evaluating a medical use license application for the use of TheraSpheres and SIR-Spheres.
    [Show full text]
  • MG Selective Internal Radiation Therapy
    Selective Internal Radiation Therapy Last Review Date: May 7, 2021 Number: MG.MM.RA.12d Medical Guideline Disclaimer Property of EmblemHealth. All rights reserved. The treating physician or primary care provider must submit to EmblemHealth the clinical evidence that the patient meets the criteria for the treatment or surgical procedure. Without this documentation and information, EmblemHealth will not be able to properly review the request for prior authorization. The clinical review criteria expressed below reflects how EmblemHealth determines whether certain services or supplies are medically necessary. EmblemHealth established the clinical review criteria based upon a review of currently available clinical information (including clinical outcome studies in the peer reviewed published medical literature, regulatory status of the technology, evidence-based guidelines of public health and health research agencies, evidence-based guidelines and positions of leading national health professional organizations, views of physicians practicing in relevant clinical areas, and other relevant factors). EmblemHealth expressly reserves the right to revise these conclusions as clinical information changes and welcomes further relevant information. Each benefit program defines which services are covered. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered and/or paid for by EmblemHealth, as some programs exclude coverage for services or supplies that EmblemHealth considers medically necessary. If there is a discrepancy between this guideline and a member's benefits program, the benefits program will govern. In addition, coverage may be mandated by applicable legal requirements of a state, the Federal Government or the Centers for Medicare & Medicaid Services (CMS) for Medicare and Medicaid members.
    [Show full text]
  • Radiation Therapy Cancer
    TYPES OF RADIATION ABOUT OHC THERAPY OFFERED At OHC, the search for new treatments is relentless, THROUGH OHC’S the drive to provide superior care runs deep and the COMPREHENSIVE fight against cancer is personal. Our independent, PROGRAM physician-led practice is recognized for going beyond clinical excellence, providing unrestricted • 3-D conformal – Three-dimensional treatment personal support and genuine emotional caring • Cesium - 131 Brachytherapy in neighborhood locations throughout the region. • CyberKnife Robotic Radiosurgery System OHC has been fighting cancer on the front lines • Gamma Knife Radiosurgery (Administered for more than three decades. At its heart, our exclusively through OHC) approach to cancer care is simple – we treat you like • HDR Brachytherapy – Internal Radiation family and surround you with everything you need so you can focus on what matters most: beating • IGRT – Image Guided Radiation Therapy cancer. • IMRT – Intensity Modulated Radiation Therapy • SBRT – Stereotactic Body Radiation Therapy • SRS – Stereotactic Radiosurgery • TheraSphere • Xofigo With a combined approach, you and your OHC radiation doctor will determine which type of RADIATION treatment is best for your diagnosis. To learn more about OHC’s radiation oncology services, please call 1-888-649-4800 or visit ohcare.com. THERAPY For more information, call toll free OHC radiation oncologists harness the power of 1-888-649-4800 or visit ohcare.com. advanced technology for targeted cancer care OHC. Start here. Research Nurses: Specially-trained registered nurses who work directly with a patient’s doctor to coordinate care and treatment if you are participating in a clinical trial . Medical Assistant: The person who takes your vital signs and completes an assessment before WHAT IS RADIATION you see the doctor THERAPY? .
    [Show full text]
  • Radioactive Materials (RAM) Program New / Renewal Medical License Checklist Licensee______Lic
    Radioactive Materials (RAM) Program New / Renewal Medical License Checklist Licensee__________________________________ Lic. #__________________________________ Submit 1 copy only. Number all pages sequentially that are submitted for review. Review the NUREG-1556 Volume 9 It can be used as guidance to complete this checklist. Submit all Policy and Procedures to the Nevada Radiation Control Program. http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1556/ Submit the Application signed by executive management or a person authorized to sign original documents. If the licensee is an IC participant, all information is minimum Official Use Only. Treat all information regarding this licensee with the appropriate caution and sensitivity. Financial Assurance, Decommissioning and Emergency Plans: If financial assurance is required, submit documentation required by NAC 459.1955. If emergency Plan is required per NAC 459.1951, submit the plan required by NAC 459.195. Mark all materials below that are requested, and submit the use for each selection. Radioactive Material Form Max Quantity Any radioactive material Any As needed permitted by 10 CFR 35.100 Any radioactive material Any As needed permitted by 10 CFR 35.200; except gases, generators and PET radioisotopes PET_________________ Liquid ( or other form) _____ millicuries ( _____GBq); permitted by _____ millicuries ( _____GBq) 10 CFR 35.200 per dose Gasses_____________ Gas _____ millicuries ( _____GBq); permitted by _____ millicuries ( _____GBq) 10 CFR 35.200 per dose Technetium-99m
    [Show full text]
  • Therasphere Yttruim-90 Glass Microspheres
    * .'. .. __ ,____ M•DDS'Nordion SekMxCtAdvtneing Health Package Insert TheraSohere@ Yttrium-90 Glass Microspheres Humanitarian Device. Authorized by Federal Law for use In radiation treatment or as a neoadjuvant to surgery or transplantation in patients with unresectable hepatocellular carcinoma (HCC) who can have placement of appropriately positioned hepatic arterial catheters. The effectiveness of this device for this use has not been demonstrated. CAUTION: Federal (USA) law restricts this device to sale by or on the order of a physician with approprate training and experience. DESCRIPTION TheraSphere® consists of insoluble glass microspheres where yttrium-90 is an integral constituent of the glass [1]. The mean sphere diameter ranges from 20 to 30 Jim. Each milligram contains between 22,000 and 73,000 microspheres. TheraSphere® is supplied in 0.05 mL of sterile, pyrogen-free water contained in a 0.3 mL vee-bottom vial secured within a 12 mm clear acrylic vial shield. A pre-assembled single use administration set is provided with each dose. TheraSphere® Is available in four dose sizes: 3 GBq (81 mCI), 5 GBq (135 mCi), 10 GBq (270 mCi), and 20 GBq (540 mC!). Yttrium-90, a pure beta emitter, decays to stable zirconium-90 with a physical half-life of 64.2 hours (2.68 days). The average energy of the beta emissions from yttrium-90 is 0.9367 MeV. Following embolization of the yttnum-90 glass microspheres In tumorous liver tissue, the beta radiation emitted provides a therapeutic effect [2-6]. The spheres are delivered into the liver tumor through a catheter placed into the hepatic artery that supplies blood to the tumor.
    [Show full text]
  • Summary and Concluding Remarks
    Chapter 10 Summary and concluding remarks 168 169 Chapter 10 Summary and concluding remarks 1. Summary This thesis describes the research that was conducted necessary to start a clinical sation with magnetic resonance imaging (MRI) [6]. The possibility to visualise a trial involving patients suffering from liver malignancies to be treated with therapeutic radionuclide with both a gamma camera and MRI is unique and radioactive holmium loaded microspheres. As discussed in the introduction of makes holmium-166 a very attractive radionuclide for oncological diagnostic this thesis, only the minority of the patients can be treated by surgery or ablation and treatment applications. methods. External beam irradiation would be a very effective way to treat liver As demonstrated in a previous thesis from our department, holmium-loaded tumours, but the required radiation dosages results in too much damage to the microspheres (Ho-PLLA-MS) have proven to be very suitable for treatment of surrounding liver tissue [1,2]. In order to irradiate liver tumours in a selective liver malignancies [7]. However, after having shown the feasibility of this radio- way, internal radionuclide microsphere therapies have been developed [3]. These nuclide therapy, further studies were necessary before Ho-PLLA-MS can be cli- therapies make use of the delivery of radionuclide-loaded microspheres near the nically applied in patients. Parallel to the pharmaceutical work also new dia- tumours by catheterisation of the hepatic artery. Yttrium-90 (Emax= 2.28 MeV; gnostic and therapeutic particles were developed in order to exploit the very half-life 64.1 h) loaded glass microspheres (TheraSphere®, MDS Nordion) and attractive characteristics of holmium for multimodality imaging and cancer therapy.
    [Show full text]
  • Yttrium-90 Selective Internal Radiation Therapy with Glass Microspheres
    Review Article | Intervention http://dx.doi.org/10.3348/kjr.2016.17.4.472 pISSN 1229-6929 · eISSN 2005-8330 Korean J Radiol 2016;17(4):472-488 Yttrium-90 Selective Internal Radiation Therapy with Glass Microspheres for Hepatocellular Carcinoma: Current and Updated Literature Review Edward Wolfgang Lee, MD, PhD1*, Lourdes Alanis, MD, MPH1*, Sung-Ki Cho, MD2*, Sammy Saab, MD3* 1Division of Interventional Radiology, Department of Radiology, UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; 2Division of Interventional Radiology, Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; 3Division of Hepatology, Department of Medicine, Pfleger Liver Institute, University of California at Los Angeles, Los Angeles, CA 90024, USA Hepatocellular carcinoma is the most common primary liver cancer and it represents the majority of cancer-related deaths in the world. More than 70% of patients present at an advanced stage, beyond potentially curative options. Ytrrium-90 selective internal radiation therapy (Y90-SIRT) with glass microspheres is rapidly gaining acceptance as a potential therapy for intermediate and advanced stage primary hepatocellular carcinoma and liver metastases. The technique involves delivery of Y90 infused glass microspheres via the hepatic arterial blood flow to the appropriate tumor. The liver tumor receives a highly concentrated radiation dose while sparing the healthy liver parenchyma due to its preferential blood supply from portal venous blood. There are two commercially available devices: TheraSphere® and SIR-Spheres®. Although, Y90-SIRT with glass microspheres improves median survival in patients with intermediate and advanced hepatocellular carcinoma and has the potential to downstage hepatocellular carcinoma so that the selected candidates meet the transplantable criteria, it has not gained widespread acceptance due to the lack of large randomized controlled trials.
    [Show full text]
  • On the 1St Research Coordination Meeting On
    REPORT on the 1st Research Coordination Meeting on “Development of Therapeutic177 Radiopharmaceuticals Based on Lu for Radionuclide Therapy” 4 to 8 December 2006 IAEA Headquarters Vienna, Austria 2 Participants of the Research Coordination Meeting on “Development of Therapeutic Radiopharmaceuticals Based on 177Lu for Radionuclide Therapy” 4 to 8 December 2006 IAEA Headquarters in Vienna, Austria 3 4 CONTENTS 1. Introduction................................................................................................................... 5 2. Overall Objective:......................................................................................................... 7 3. Specific Research Objective: ........................................................................................ 7 4. Expected Research Outputs (Results):.......................................................................... 7 5. Summary of Country Presentation................................................................................ 8 6. Formulation of the Work plan of the CRP.................................................................. 19 7. Cooperation among participants ................................................................................. 33 8. Recommendations....................................................................................................... 33 9. Conclusion .................................................................................................................. 34 Country Reports .............................................................................................................
    [Show full text]