DNA Barcoding: How It Complements Taxonomy, Molecular Phylogenetics and Population Genetics

Total Page:16

File Type:pdf, Size:1020Kb

DNA Barcoding: How It Complements Taxonomy, Molecular Phylogenetics and Population Genetics Opinion TRENDS in Genetics Vol.23 No.4 DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics Mehrdad Hajibabaei1, Gregory A.C. Singer2, Paul D.N. Hebert1 and Donal A. Hickey3 1 Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada 2 Human Cancer Genetics Program, The Ohio State University, Columbus, OH 43210, USA 3 Department of Biology, Concordia University, 7141 Sherbrooke Street, Montreal, Quebec H4B 1R6, Canada DNA barcoding aims to provide an efficient method for barcoding datasets are essentially composed of short species-level identifications and, as such, will contribute DNA sequences from several individuals of a large number powerfully to taxonomic and biodiversity research. As of species (typically five to ten individuals per species, but the number of DNA barcode sequences accumulates, these numbers will increase in the future) (Figure 1). however, these data will also provide a unique ‘horizon- Here, we discuss the role of DNA barcodes in advancing tal’ genomics perspective with broad implications. For the taxonomic enterprise and its potential to provide a example, here we compare the goals and methods of contextual framework for both building phylogenies and DNA barcoding with those of molecular phylogenetics for population genetics. In particular, we argue that bar- and population genetics, and suggest that DNA barcod- code results can be of high value in aiding the selection of ing can complement current research in these areas by species for more detailed analysis, and demonstrate that providing background information that will be helpful in DNA barcoding can broaden our understanding of both the selection of taxa for further analyses. phylogenetic signal and population-level variation. Introduction The DNA barcoding workflow Because of advances in sequencing and computational Species identification through barcoding is usually technologies, DNA sequences have become the major source achieved by the retrieval of a short DNA sequence – the of new information for advancing our understanding of ‘barcode’ – from a standard part of the genome (i.e. a evolutionary and genetic relationships. The footprints of specific gene region) from the specimen under investi- comparative sequence analysis are now apparent in almost gation. The barcode sequence from each unknown speci- all areas of the biological sciences, from development to men is then compared with a library of reference barcode epidemiology [1]. However, two branches of biology have sequences derived from individuals of known identity developed the tools and applications employed to assess (Figure 2). A specimen is identified if its sequence closely biological relationships with DNA sequences: molecular matches one in the barcode library. Otherwise, the new phylogenetics, and population genetics. These disciplines record can lead to a novel barcode sequence for a given focus on different levels of organization. Studies in molecu- species (i.e. a new haplotype or geographical variant), or it lar phylogenetics typically deal with evolutionary relation- can suggest the existence of a newly encountered species ships among deeper clades, whereas those in population (see below). genetics target variation within and among populations of a Various gene regions have been employed for single species. By comparison, DNA barcoding occupies a species-level biosystematics (Table 1); however, DNA bar- middle ground as it seeks comprehensive coverage for coding advocates the adoption of a ‘global standard’, and a species, but focuses on their delineation rather than their 650-base fragment of the 50 end of the mitochondrial gene relationships (Figure 1). cytochrome c oxidase I (COI, cox1) [2] has gained desig- DNA barcoding is based on the premise that a short nation as the barcode region for animals. This fragment standardized sequence can distinguish individuals of a species because genetic variation between species exceeds that within species [2]. Pilot projects have now established Glossary the effectiveness of this approach in several large groups of Clade: a group of organisms descended from a common evolutionary animals, such as birds [3], fish [4], cowries [5], spiders [6], ancestor; a branch of the Tree of Life. and several arrays of Lepidoptera [7–9]. In addition, DNA Homoplasy: a shared character that was not inherited from a common barcoding systems are now being established for other evolutionary ancestor but, rather, that arose through convergent evolution. Phylogeny: the evolutionary history of species relationships, often visualized groups of organisms, including plants [10], macroalgae as phylogenetic tree (e.g. the Tree of Life). [11], fungi [12], protists [13] and bacteria [14]. DNA Taxon: a group of organisms. Taxonomy: the science of classification. Biological taxonomy creates a hierarchical classification of biological taxa, usually reflecting evolutionary Corresponding author: Hajibabaei, M. ([email protected]). relationships. Available online 20 February 2007. www.sciencedirect.com 0168-9525/$ – see front matter ß 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tig.2007.02.001 168 Opinion TRENDS in Genetics Vol.23 No.4 Figure 1. DNA barcodes lie within the gray area between phylogenetics and population genetics. This diagram demonstrates the position of DNA barcode data relative to both population genetics and phylogenetics data. Each small square represents an individual. Different colors are used to represent different species and within-species variation is shown by varying shades of color. Figure 2. Major components of the Barcode of Life projects and their contribution to taxonomy, reconstruction of molecular phylogenies and population genetics investigations. This diagram shows how DNA barcoding libraries can support the conventional taxonomic workflow by high-throughput identification of unknown specimens and by helping to draw attention to new and cryptic species. Barcode sequences and collateral data for each specimen are accessible through a global online data base (e.g. BOLD: http://www.barcodinglife.org). This information can be useful in other contexts, such as phylogenetics (Tree of Life projects) and population-level studies. In addition, archival DNA and tissue specimens collected in barcoding projects provide an excellent resource for other investigations. Butterfly images are taken from the database of Daniel Janzen and Winnie Hallwachs (http://janzen.sas.upenn.edu/). www.sciencedirect.com Opinion TRENDS in Genetics Vol.23 No.4 169 Table 1. Common species-level molecular markers Genea Genomic location Number of sequences Animals Plants Protists Fungi COI-barcodeb Mitochondria 195 777 520 1931 410 16S-rDNA Mitochondria 41 381 221 2059 285 cytb Mitochondria 88 324 165 1920 1084 ITS1-rDNA Nucleus 12 175 57 693 68 839 56 675 ITS2-rDNA Nucleus 13 923 58 065 67 332 56 349 18S-rDNA Nucleus 21 063 17 121 32 290 33 327 rbcL Plastid NAc 30 663 37 328 NA aGene abbreviations: COI, cytochrome c oxidase I; cytb, cytochrome b; ITS, internal transcribed spacer; rbcL, large subunit of ribulose 1,5-bisphosphate carboxylase/ oxygenase. bCOI-barcode statistics are retrieved from Barcode of Life Data systems (http://www.barcodinglife.org). Statistics for other loci are retrieved from GenBank. cNA, not applicable. size has been selected so that a reliable sequence read can photographs and locality information, and assembling be obtained by a single sequence pass in conventional cycle- the barcode library (i.e. a 650-base segment of the COI sequencing platforms. Shorter fragments of COI have also gene) [16]. The analysis of DNA barcoding data is usually been shown to be effective for the identification of speci- performed by a clustering method, such as distance-based mens with degraded DNA, however, where a 650-base neighbor-joining (NJ) [25], and by evaluating genetic dis- sequence is not easily obtainable [15]. In addition, the tances within and between species (e.g. [8]). More complex usability and robustness of COI in a standard high- methodologies for data analysis are under development, throughput barcoding analysis have been extensively including statistical tests for species assignment [26,27], assessed [16]. and character-based clustering methods [28]. Other researchers have suggested that alternate loci might also serve as a basis for species identification. For DNA barcoding and taxonomy example, 18S rDNA has been used for the identification of Although its role in identifying specimens to a species level soil nematodes and other small organisms in an approach is an important aid for taxonomic workflow (Figure 2), known as ‘DNA taxonomy’ [17]. This approach differs from barcoding is no replacement for comprehensive taxonomic DNA barcoding in that it does not aim to link the genetic analysis. For example, when an unknown specimen does not entities recognised through sequence analysis with Lin- return a close match to existing records in the barcode naean species. As such, it is most useful for groups of library, the barcode sequence does not qualify the unknown organisms that lack detailed taxonomic systems. Alternate specimen for designation as a new species. Instead, such markers have also been used where COI sequences have specimens are flagged for thorough taxonomic analysis. not been produced robustly or are shown to be divergent When viewed in the context of the traditional taxonomic within species [18] or as further molecular
Recommended publications
  • Using DNA Barcodes to Identify and Classify Living Things
    Using DNA Barcodes to Identify and Classify Living Things www.dnabarcoding101.org LABORATORY Using DNA Barcodes to Identify and Classify Living Things OBJECTIVES This laboratory demonstrates several important concepts of modern biology. During this laboratory, you will: • Collect and analyze sequence data from plants, fungi, or animals—or products made from them. • Use DNA sequence to identify species. • Explore relationships between species. In addition, this laboratory utilizes several experimental and bioinformatics methods in modern biological research. You will: • Collect plants, fungi, animals, or products in your local environment or neighborhood. • Extract and purify DNA from tissue or processed material. • Amplify a specific region of the chloroplast, mitochondrial, or nuclear genome by polymerase chain reaction (PCR) and analyze PCR products by gel electrophoresis. • Use the Basic Local Alignment Search Tool (BLAST) to identify sequences in databases. • Use multiple sequence alignment and tree-building tools to analyze phylogenetic relation - ships. INTRODUCTION Taxonomy, the science of classifying living things according to shared features, has always been a part of human society. Carl Linneas formalized biological classifi - cation with his system of binomial nomenclature that assigns each organism a genus and species name. Identifying organisms has grown in importance as we monitor the biological effects of global climate change and attempt to preserve species diversity in the face of accelerating habitat destruction. We know very little about the diversity of plants and animals—let alone microbes—living in many unique ecosystems on earth. Less than two million of the estimated 5–50 million plant and animal species have been identified. Scientists agree that the yearly rate of extinction has increased from about one species per million to 100–1,000 species per million.
    [Show full text]
  • DNA Barcoding Distinguishes Pest Species of the Black Fly Genus <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 11-2013 DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) I. M. Confitti University of Toronto K. P. Pruess University of Nebraska-Lincoln A. Cywinska Ingenomics, Inc. T. O. Powers University of Nebraska-Lincoln D. C. Currie University of Toronto and Royal Ontario Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Confitti, I. M.; Pruess, K. P.; Cywinska, A.; Powers, T. O.; and Currie, D. C., "DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae)" (2013). Faculty Publications: Department of Entomology. 616. http://digitalcommons.unl.edu/entomologyfacpub/616 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MOLECULAR BIOLOGY/GENOMICS DNA Barcoding Distinguishes Pest Species of the Black Fly Genus Cnephia (Diptera: Simuliidae) 1,2 3 4 5 1,2,6 I. M. CONFLITTI, K. P. PRUESS, A. CYWINSKA, T. O. POWERS, AND D. C. CURRIE J. Med. Entomol. 50(6): 1250Ð1260 (2013); DOI: http://dx.doi.org/10.1603/ME13063 ABSTRACT Accurate species identiÞcation is essential for cost-effective pest control strategies. We tested the utility of COI barcodes for identifying members of the black ßy genus Cnephia Enderlein (Diptera: Simuliidae). Our efforts focus on four Nearctic Cnephia speciesÑCnephia dacotensis (Dyar & Shannon), Cnephia eremities Shewell, Cnephia ornithophilia (Davies, Peterson & Wood), and Cnephia pecuarum (Riley)Ñthe latter two being current or potential targets of biological control programs.
    [Show full text]
  • DNA Barcoding Analysis and Phylogenetic Relation of Mangroves in Guangdong Province, China
    Article DNA Barcoding Analysis and Phylogenetic Relation of Mangroves in Guangdong Province, China Feng Wu 1,2 , Mei Li 1, Baowen Liao 1,*, Xin Shi 1 and Yong Xu 3,4 1 Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; [email protected] (F.W.); [email protected] (M.L.); [email protected] (X.S.) 2 Zhaoqing Xinghu National Wetland Park Management Center, Zhaoqing 526060, China 3 Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; [email protected] 4 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-020-8702-8494 Received: 9 December 2018; Accepted: 4 January 2019; Published: 12 January 2019 Abstract: Mangroves are distributed in the transition zone between sea and land, mostly in tropical and subtropical areas. They provide important ecosystem services and are therefore economically valuable. DNA barcoding is a useful tool for species identification and phylogenetic reconstruction. To evaluate the effectiveness of DNA barcoding in identifying mangrove species, we sampled 135 individuals representing 23 species, 22 genera, and 17 families from Zhanjiang, Shenzhen, Huizhou, and Shantou in the Guangdong province, China. We tested the universality of four DNA barcodes, namely rbcL, matK, trnH-psbA, and the internal transcribed spacer of nuclear ribosomal DNA (ITS), and examined their efficacy for species identification and the phylogenetic reconstruction of mangroves. The success rates for PCR amplification of rbcL, matK, trnH-psbA, and ITS were 100%, 80.29% ± 8.48%, 99.38% ± 1.25%, and 97.18% ± 3.25%, respectively, and the rates of DNA sequencing were 100%, 75.04% ± 6.26%, 94.57% ± 5.06%, and 83.35% ± 4.05%, respectively.
    [Show full text]
  • Cristescu TREE 2014.Pdf
    TREE-1853; No. of Pages 6 Opinion From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity Melania E. Cristescu Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada DNA-based species identification, known as barcoding, introduced by Arnot et al. [6] and was firmly advanced transformed the traditional approach to the study of and standardized by Hebert et al. [7]. The simple idea of biodiversity science. The field is transitioning from bar- using a short DNA fragment as a barcode (see Glossary) for coding individuals to metabarcoding communities. This identifying species across the Metazoa has been both revolution involves new sequencing technologies, bio- strongly embraced and vigorously scrutinized over the past informatics pipelines, computational infrastructure, and decade [8,9]. Nevertheless, the efforts led by Paul Hebert, experimental designs. In this dynamic genomics land- and supported by the Consortium for the Barcode of Life scape, metabarcoding studies remain insular and biodi- (CBoL; http://www.barcodeoflife.org/) resulted in a global versity estimates depend on the particular methods enterprise that combined molecular tools with valuable but used. In this opinion article, I discuss the need for a scarce taxonomic expertise [10,11]. Today, DNA barcodes coordinated advancement of DNA-based species identi- are being used commonly to identify specimens and the fication that integrates taxonomic and barcoding infor- approach has wide applications in biodiversity conserva- mation. Such an approach would facilitate access to tion, environmental management, invasion biology, the almost 3 centuries of taxonomic knowledge and 1 de- study of trophic interactions, and food safety [12–14].
    [Show full text]
  • Automated, Phylogeny-Based Genotype Delimitation of the Hepatitis Viruses HBV and HCV
    Automated, phylogeny-based genotype delimitation of the Hepatitis Viruses HBV and HCV Dora Serdari1, Evangelia-Georgia Kostaki2, Dimitrios Paraskevis2, Alexandros Stamatakis1,3 and Paschalia Kapli4 1 The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany 2 Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece 3 Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany 4 Centre for Life's Origins and Evolution, Department of Genetics Evolution and Environment, University College London, University of London, London, United Kingdom ABSTRACT Background. The classification of hepatitis viruses still predominantly relies on ad hoc criteria, i.e., phenotypic traits and arbitrary genetic distance thresholds. Given the subjectivity of such practices coupled with the constant sequencing of samples and discovery of new strains, this manual approach to virus classification becomes cumbersome and impossible to generalize. Methods. Using two well-studied hepatitis virus datasets, HBV and HCV, we assess if computational methods for molecular species delimitation that are typically applied to barcoding biodiversity studies can also be successfully deployed for hepatitis virus classification. For comparison, we also used ABGD, a tool that in contrast to other distance methods attempts to automatically identify the barcoding gap using pairwise genetic distances for a set of aligned input sequences. Results—Discussion. We found that the mPTP species delimitation tool identified even without adapting its default parameters taxonomic clusters that either correspond to the currently acknowledged genotypes or to known subdivision of genotypes Submitted 17 April 2019 (subtypes or subgenotypes). In the cases where the delimited cluster corresponded Accepted 26 August 2019 Published 25 October 2019 to subtype or subgenotype, there were previous concerns that their status may be underestimated.
    [Show full text]
  • Dna Barcodes, Partitioned Phylogenetic Models, And
    LARGE DATASETS AND TRICHOPTERA PHYLOGENETICS: DNA BARCODES, PARTITIONED PHYLOGENETIC MODELS, AND THE EVOLUTION OF PHRYGANEIDAE By PAUL BRYAN FRANDSEN A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Entomology Written under the direction of Karl M. Kjer And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey OCTOBER 2015 ABSTRACT OF THE DISSERTATION Large datasets and Trichoptera phylogenetics: DNA barcodes, partitioned phylogenetic models, and the evolution of Phryganeidae By PAUL BRYAN FRANDSEN Dissertation Director: Karl M. Kjer Large datasets in phylogenetics—those with a large number of taxa, e.g. DNA barcode data sets, and those with a large amount of sequence data per taxon, e.g. data sets generated from high throughput sequencing—pose both exciting possibilities and interesting analytical problems. The analysis of both types of large datasets is explored in this dissertation. First, the use of DNA barcodes in phylogenetics is investigated via the generation of phylogenetic trees for known monophyletic clades. Barcodes are found to be useful in shallow scale phylogenetic analyses when given a well-supported scaffold on which to place them. One of the analytical challenges posed by large phylogenetic datasets is the selection of appropriate partitioned models of molecular evolution. The most commonly used model partitioning strategies can fail to characterize the true variation of the evolutionary process and this effect can be exacerbated when applied to large datasets. A new, scalable algorithm for the automatic selection ! ii! of partitioned models of molecular evolution is proposed with an eye toward reducing systematic error in phylogenomics.
    [Show full text]
  • DNA Barcoding Reveal Patterns of Species Diversity Among
    www.nature.com/scientificreports OPEN DNA barcoding reveal patterns of species diversity among northwestern Pacific molluscs Received: 04 April 2016 Shao’e Sun, Qi Li, Lingfeng Kong, Hong Yu, Xiaodong Zheng, Ruihai Yu, Lina Dai, Yan Sun, Accepted: 25 August 2016 Jun Chen, Jun Liu, Lehai Ni, Yanwei Feng, Zhenzhen Yu, Shanmei Zou & Jiping Lin Published: 19 September 2016 This study represents the first comprehensive molecular assessment of northwestern Pacific molluscs. In total, 2801 DNA barcodes belonging to 569 species from China, Japan and Korea were analyzed. An overlap between intra- and interspecific genetic distances was present in 71 species. We tested the efficacy of this library by simulating a sequence-based specimen identification scenario using Best Match (BM), Best Close Match (BCM) and All Species Barcode (ASB) criteria with three threshold values. BM approach returned 89.15% true identifications (95.27% when excluding singletons). The highest success rate of congruent identifications was obtained with BCM at 0.053 threshold. The analysis of our barcode library together with public data resulted in 582 Barcode Index Numbers (BINs), 72.2% of which was found to be concordantly with morphology-based identifications. The discrepancies were divided in two groups: sequences from different species clustered in a single BIN and conspecific sequences divided in one more BINs. In Neighbour-Joining phenogram, 2,320 (83.0%) queries fromed 355 (62.4%) species-specific barcode clusters allowing their successful identification. 33 species showed paraphyletic and haplotype sharing. 62 cases are represented by deeply diverged lineages. This study suggest an increased species diversity in this region, highlighting taxonomic revision and conservation strategy for the cryptic complexes.
    [Show full text]
  • DNA Barcoding Central Asian Butterflies: Increasing Geographical
    Molecular Ecology Resources (2009) 9, 1302–1310 doi: 10.1111/j.1755-0998.2009.02577.x DNA BARCODING DNA barcoding Central Asian butterflies: increasing geographical dimension does not significantly reduce the success of species identification VLADIMIR A. LUKHTANOV,*† ANDREI SOURAKOV,‡ EVGENY V. ZAKHAROV§ and PAUL D. N. HEBERT§ *Department of Karyosystematics, Zoological Institute of Russian Academy of Science, Universitetskaya nab. 1, 199034 St. Petersburg, Russia, †Department of Entomology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia, ‡McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA, §Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada N1G 2W1 Abstract DNA barcoding employs short, standardized gene regions (5’ segment of mitochondrial cytochrome oxidase subunit I for animals) as an internal tag to enable species identification. Prior studies have indicated that it performs this task well, because interspecific variation at cytochrome oxidase subunit I is typically much greater than intraspecific variation. How- ever, most previous studies have focused on local faunas only, and critics have suggested two reasons why barcoding should be less effective in species identification when the geograph- ical coverage is expanded. They suggested that many recently diverged taxa will be excluded from local analyses because they are allopatric. Second, intraspecific variation may be seri- ously underestimated by local studies, because geographical variation in the barcode region is not considered. In this paper, we analyse how adding a geographical dimension affects barcode resolution, examining 353 butterfly species from Central Asia. Despite predictions, we found that geographically separated and recently diverged allopatric species did not show, on average, less sequence differentiation than recently diverged sympatric taxa.
    [Show full text]
  • Teleostei: Beryciformes: Holocentridae): Reconciling More Than 100 Years of Taxonomic Confusion ⇑ Alex Dornburg A, , Jon A
    Molecular Phylogenetics and Evolution 65 (2012) 727–738 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogenetics of squirrelfishes and soldierfishes (Teleostei: Beryciformes: Holocentridae): Reconciling more than 100 years of taxonomic confusion ⇑ Alex Dornburg a, , Jon A. Moore b,c, Rachel Webster a, Dan L. Warren d, Matthew C. Brandley e, Teresa L. Iglesias f, Peter C. Wainwright g, Thomas J. Near a,h a Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA b Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA c Florida Atlantic University, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA d Section of Integrative Biology, University of Texas, Austin, TX 78712, USA e School of Biological Sciences, University of Sydney, NSW 2006, Australia f Graduate Group in Animal Behavior, University of California, Davis, CA 95616, USA g Department of Evolution and Ecology, University of California, Davis, CA 95616, USA h Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA article info abstract Article history: Squirrelfishes and soldierfishes (Holocentridae) are among the most conspicuous species in the nocturnal Received 16 April 2012 reef fish community. However, there is no clear consensus regarding their evolutionary relationships, Revised 19 July 2012 which is reflected in a complicated taxonomic history. We collected DNA sequence data from multiple Accepted 23 July 2012 single copy nuclear genes and one mitochondrial gene sampled from over fifty percent of the recognized Available online 3 August 2012 holocentrid species and infer the first species-level phylogeny of the Holocentridae.
    [Show full text]
  • Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia Megan Ribak University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Honors Scholar Theses Honors Scholar Program Spring 5-9-2010 Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia Megan Ribak University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/srhonors_theses Part of the Biology Commons, Developmental Biology Commons, and the Genetics Commons Recommended Citation Ribak, Megan, "Assessing the Phylogenetic Utility of DNA Barcoding Using the New Zealand Cicada Genus Kikihia" (2010). Honors Scholar Theses. 127. https://opencommons.uconn.edu/srhonors_theses/127 1 APPROVAL PAGE HONORS THESIS ASSESSING THE PHYLOGENETIC UTILITY OF DNA BARCODING USING THE NEW ZEALAND CICADA GENUS KIKIHIA Presented by Megan Pierce Ribak Honors Thesis Advisor_____________________________________________________ Chris Simon Honors Academic Advisor__________________________________________________ Janine Caira Associate Honors Advisor__________________________________________________ Elizabeth Jockusch Department of Ecology & Evolutionary Biology The University of Connecticut 2010 2 Abstract DNA Barcoding (Hebert et al. 2003) has the potential to revolutionize the process of identifying and cataloguing biodiversity; however, significant controversy surrounds some of the proposed applications. In the seven years since DNA barcoding was introduced, the Web of Science records more than 600 studies that have weighed the pros and cons of this procedure. Unfortunately, the scientific community has been unable to come to any consensus on what threshold to use to differentiate species or even whether the barcoding region provides enough information to serve as an accurate species identification tool. The purpose of my thesis is to analyze mitochondrial DNA (mtDNA) barcoding’s potential to identify known species and provide a well-resolved phylogeny for the New Zealand cicada genus Kikihia .
    [Show full text]
  • DNA Barcoding and Its Applications
    International Journal of Engineering Research and General Science Volume 3, Issue 2, Part 2, March-April, 2015 ISSN 2091-2730 DNA Barcoding and Its Applications Sukhamrit Kaur [email protected] Contact No.: 09872455529 Abstract— DNA barcoding is a system for fast and accurate species identification that makes ecological system more accessible by using short DNA sequence instead of whole genome and is used for eukaryotes. The short DNA sequence is generated from standard region of genome known as marker. This marker is different for various species like CO1 cytochrome c oxidase 1 for animals, matK for plants and Internal Transcribed Spacer (ITS) for fungus. DNA barcoding has many applications in various fields like preserving natural resources, protecting endangered species, controlling agriculture pests, identifying disease vectors, monitoring water quality, authentication of natural health products and identification of medicinal plants. Keywords— CO1, DNA, DNA Barcode, IBOL, Identification, ITS, Marker. INTRODUCTION Biological effects of global climate lead to importance of identification of organisms to preserve species because of increasing habitat destruction. About 5 to 50 million plants and animals are living on earth, out of which less than 2 million have been identified. Extinction of animals and plants is increasing yearly means thousand of them are lost each year and most of them are not identified yet.[1] This destruction and endangerment of ecosystem has lead to an improved system for identifying species. In recent years new ecological approach called DNA barcoding has been proposed to identify species and ecology research. [2][3] DNA barcoding, a system for fast and accurate species identification which will make ecological system more accessible.
    [Show full text]
  • DNA Barcoding: Potential Users. Genomics, Society and Policy 3(2)
    Genomics, Society and Policy 2007, Vol.3, No.2, pp.44-47 Commissioned response to Filipe O. Costa & Gary R. Carvalho, ‘The Barcode of Life Initiative: Synopsis and Prospective Societal Impacts of DNA Barcoding of Fish’ DNA barcoding: potential users PETER M. HOLLINGSWORTH1 The current popularity of DNA barcoding relates to its potential power coupled with its intuitively pleasing simplicity. It is based on the premise of using a standard short region of DNA as a universal tool for identifying organisms.2 The aim is to establish a large-scale reference sequence database against which unknown samples can be queried for identification. Where sequences are found that are divergent from others in the database, the corresponding specimens are flagged up as potential new species warranting further investigation. Costa and Carvalho3 describe some of the potential societal benefits of DNA barcoding in the context of fish identification and also summarise some of the potential benefits to the discipline of taxonomy itself. Who will benefit most from DNA based identification? Table I lists some examples of people who identify organisms and some of the approaches they may use. Much of the debate around DNA barcoding has focused on its implications for taxonomists and taxonomy. However, if DNA barcoding can be made accessible and cheap, arguably the greatest beneficiaries will be the many professionals whose work involves biological identifications, but whose job is not to carry out taxonomy per se. For this category of people, DNA identification can potentially offer a direct route to the knowledge generated by taxonomists, and avoid them having to spend their time learning how to identify organisms.
    [Show full text]