On the Rheology of Shear-Thickening and Magnetorheological Fluids Under Strong Confinement

Total Page:16

File Type:pdf, Size:1020Kb

On the Rheology of Shear-Thickening and Magnetorheological Fluids Under Strong Confinement On the rheology of shear-thickening and magnetorheological fluids under strong confinement TESIS DOCTORAL Programa de Doctorado en Física y Ciencias del Espacio Elisa María Ortigosa Moya Directores Juan de Vicente Álvarez-Manzaneda Roque Isidro Hidalgo Álvarez Grupo de Física de Fluidos y Biocoloides Departamento de Física Aplicada 2020 Editor: Universidad de Granada. Tesis Doctorales Autor: Elisa María Ortigosa Moya ISBN: 978-84-1306-706-3 URI: http://hdl.handle.net/10481/65310 A mis padres y mi hermana. A los hijos de la tierra y los peces de ciudad. Agradecimientos Llega el momento de dedicar unas líneas de agradecimiento sincero a todos aquellos que de una u otra manera han estado a mi lado en días de sol, nubes y lluvia, ofreciéndome su ayuda, apoyo y tiempo para llevar a buen término esta tesis. En primer lugar quiero comenzar por dar las gracias a mis directores de tesis. A Juan, por ofrecerme la posibilidad de trabajar junto a él, un excepcio- nal investigador con capacidad para guiar el trabajo de cada vez más gente y hacerlo bien, además. Y a Roque, un insaciable aprendiz que contagia su ilu- sión por la ciencia. Gracias por lo aprendido y por vuestra confianza, consejos y paciencia durante estos años. Gracias también a los miembros del Departamento de Física Aplicada, en especial al Grupo de Física de Fluidos y Biocoloides, por dejarme aprender de vosotros en cada seminario y ayudarme en lo que he necesitado: Ana Belén, Julia, Alberto, Arturo, Teresa, Wagner, Curro y Miguel Ángel. A María, por su disposición y su sonrisa imborrable; a Pepe, compañero en el sótano con quien habría disfrutado en clase como alumna; a Delfi por sus firmas y cariño; a Miguel Cabrerizo, por acercar la ciencia a la gente; y especialmente a María José, Fernando y Stefania, por su constante ayuda en las prácticas de Biofísica cada curso. Del mismo modo, también ha sido un placer compartir las prácti- cas de Fundamentos físicos aplicados a las estructuras con Artur, Javier, Enri- vii Agradecimientos que, Matilde, José Antonio y Jorge, que tantas veces ha bajado las escaleras para asegurarse de que todo funcionaba bien en la sala. También quiero agra- decer la labor de los administrativos Conrado, Belén y Raquel, y la de Ángel y María Jesús como coordinadores del programa de doctorado, por su amable trato y facilitarnos la burocracia. Así mismo también me acuerdo de Felisa y su preciosa Ángela, de Marisa y esa coreografía tan ensayada y de María del Mar, que no dejó de repartir abrazos, alegría y sororidad. Este tiempo habría sido muy distinto de no ser por mis compañeros de la sala 휋푓, gracias a todos ellos por compartir tantos momentos juntos. A aque- llos que estuvieron poco tiempo al principio pero que sembraron un ambiente estupendo: Juan Pablo, Azahara, Germán y Diego. A José Antonio, por su sim- patía e inestimable ayuda en mis innumerables tropiezos con las simulacio- nes. Al hijo adoptivo de Nerja, Keshvad, por enseñarme tribología y encontrar los dulces más ricos en cada aeropuerto. A José Rafael, un ejemplo de eficien- cia que ha superado cada rasguño del rugby. Al fascinante y aventurero Guille, que nos llevó en chanclas hasta el techo peninsular y no dejó de alentarnos por aquellos preciosos parajes. A Tamara, por traer orden al laboratorio y una nueva sonrisa a la sala. A los que estuvieron de paso menos tiempo, como Ma- ría Laura con sus palabras de ánimo, antiguas y recientes, para “meterle pila” a la tesis; la encantadora Camila, Ester, Mónica, Ángel, Blanca, Alan, Jianjian, Martin y Dorota. Gracias también a Pablo Ibáñez, Yan, Alicia, Matthew, Pablo Graván y Sara por reavivar la sala, espero que sigáis cuidando de ella. Quiero dar las gracias a Paloma, Pablo y Samuel por luchar por todos, y a Milagros por su cercanía y apoyo. A Jose y Santiago, por solucionar problemi- llas en los clusters Proteus y Alhambra y su disposición a ayudarme cuando lo he necesitado. A los compis de la peña, con los que recargué las pilas cada miércoles. A Aurora, por su fiel compañía carrera tras carrera y hacerse un hueco entre nosotros. A Matt y David, por acompañarnos siempre que han podido. Y también a Maxwell, del que cada vez me asusto menos aunque salte más, y a Pablo Pamplona, Oviedo, Zamora…, por las divertidas confusiones. Recorrer el largo y pedregoso camino que emprendí ha sido mucho más fácil dentro de una burbuja rebosante de calidad humana, comprensión, com- pañía, entretenimiento, comida (mucha) y, en definitiva, amistad. Gracias por dejarme crecer y aprender a vuestro lado. A la divertida y organizada Irene, que tanto me ha hecho reír y enseñado sobre la idiosincrasia granaína. Es im- posible no echarla de menos a mi espalda, en el fútbol o bailando con lenguaje de signos. Menos mal que aun sin estar sigue estando y deleitándonos con sus viii Agradecimientos peripecias y virtuosismo eligiendo GIFs. A la pizpireta Aixa, por esas recetas tan ricas que nos ha preparado durante este tiempo y contagiarnos su alegría. A Luis, por estar pendiente de mí en los momentos delicados, ser un buen senpai y entretenernos con sus aventuras. Gracias Leo, por ser el pegamento más antiguo y duradero del grupo, cuidar de todos nosotros y enseñarnos a compartir. A Migue, que casi no tuvo cascarón y de quien tanto se puede aprender. A Pablo con su desparpajo malagueño y su faceta actoral, porque todo es más divertido si está cerca. A Nico, por su energía desbordante y su memoria infinita para el quesito rosa, lleno de ideas para hacer regalos de tesis y sobre dónde ir a comer, y por presentarme a los dragones. A Ana, que no puede ser más “apañá”, por los ratos de recetas, costura, deporte y los cur- sillos exprés de sevillanas. A Javi con sus apuestas siempre ganadoras, por enseñarme algo de fonética y por qué el 28 es un número perfecto, aunque nunca viéramos su tesis. A su particular Zipi, Alvaro, por sus acertadas reco- mendaciones tecnológicas. El brillante Adri consiguió que muchos nos leyé- ramos su tesis para encontrar dónde estaba la gracia, al mismo tiempo que nos recordaba que somos una ohana en la que nadie se deja atrás. Gracias al polifacético José Alberto, por aguantarme estos años y cuidar de mí, por ense- ñarnos a protegernos para ser un poquito más libres, por las clases de armo- nía y mostrarme unos anillos muy lejanos, por tantas risas y complicidad. Soy muy consciente de que difícilmente volveré a toparme con tanta gente tan capaz, divertida y cariñosa como vosotros. Sois especiales. También quiero dar las gracias a mis ingenieros repartidos por el mundo, por su memoria, con la que completamos nuestros puzles de anécdotas pasa- das para acabar llorando de risa: Nuria, Susana, Blanco, Juanjo, Antonio, Abraham, Candela y mis queridos tomatitos. También quiero agradecer su continuo interés y apoyo a Amabel, Lorena, Dani y Alfonso. A Pedro, que me peina el alma y me la enreda, y cuyo aliento y sustento no me dejan caer. Gracias por seguir estando a mi lado por lejos que me en- cuentre, por hacerme reír y mimarme, por quererme. A mi familia, que siem- pre está ahí aunque todo cambie, y a la dulce Rocío. A mi hermana, Jose y sus dos tesoros, que consiguen sacarme una sonrisa a la mínima. Y, finalmente, gracias a mis padres, los cimientos firmes que siempre me ofrecen su ejemplo de lucha, unión y amor, y que me enseñaron que ante un gran salto como este hay que coger un gran impulso. Os quiero. ix Financiación La investigación que ha conducido a la realización de esta tesis doctoral ha sido financiada por el Ministerio de Economía y Competitividad (MINECO), mediante los proyectos MAT 2013-44429-R y MAT 2016- 78778-R, el Fondo Europeo de Desarrollo Regional (FEDER) y por la Jun- ta de Andalucía mediante el proyecto P11-FQM-7074. La doctoranda agradece la ayuda predoctoral para la formación de doctores FPI 2014/069341. xi Contents Abstract xvii Resumen xxi Part I: Introduction 1 1. Background 3 1.1. Complex fluids 3 1.1.1. Colloids 4 1.1.2. Field-responsive materials 7 1.1.3. Concentrated suspensions 11 1.1.4. Shear thickening 12 1.2. Basis on magnetism 14 1.2.1. Types of magnetic materials 16 1.3. Rheology 17 1.3.1. Types of materials and their rheological response 18 1.3.2. Constitutive equations and material functions 20 1.3.3. Effect of volume fraction in viscosity 24 1.4. Tribology 26 1.4.1. Generalities 26 1.4.2. Reynolds equation 31 1.4.3. Film thickness 32 1.5. Simulation methods for colloidal suspensions 35 1.6. References 36 xiii Contents 2. Justification 41 2.1. Objectives 43 2.2. Outline of the thesis 44 2.2.1. Rheology in dense suspensions 44 2.2.2. Tribology in inelastic non-Newtonian fluids 45 2.2.3. Rheology of diluted MR fluids under squeeze flow 46 3. Methodology 47 3.1. Materials 47 3.1.1. Starch 47 3.1.2. Fumed silica 50 3.1.3. Carbonyl iron 50 3.1.4. Sample preparation 52 3.2. Experimental methods 56 3.2.1. Rheometry 56 3.2.2. Tribometry 67 3.2.3. Microscopic characterization 68 3.2.4. Analysis of particle size distribution 73 3.2.5. Colloidal stability 75 3.2.6. Contact angle measurement 80 3.2.7. Calibration of the magnetic field applied by a solenoid 81 3.3. Simulation methods 82 3.3.1.
Recommended publications
  • Mechanical Control of Fluid Viscosity Using 3D-Printed Functional Particles
    Graduate Theses, Dissertations, and Problem Reports 2018 Smart Fluids Using Mechanics: Mechanical Control of Fluid Viscosity Using 3D-printed Functional Particles Rofiques Salehin Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Salehin, Rofiques, "Smart Fluids Using Mechanics: Mechanical Control of Fluid Viscosity Using 3D-printed Functional Particles" (2018). Graduate Theses, Dissertations, and Problem Reports. 7246. https://researchrepository.wvu.edu/etd/7246 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Smart Fluids Using Mechanics: Mechanical Control of Fluid Viscosity Using 3D-printed Functional Particles Rofiques Salehin Thesis submitted to the Benjamin M. Statler College of Engineering and Mineral Resources at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Stefanos Papanikolaou, Ph.D. , Chair Patrick Browning, Ph.D. Terence Musho, Ph.D. Department of Mechanical and Aerospace Engineering Morgantown, West Virginia 2018 Keywords: Molecular Dynamics, Functional Particles, Viscosity, SRD, Jamming Copyright 2018 Rofiques Salehin Smart Fluids Using Mechanics: Mechanical Control of Fluid Viscosity Using 3D-printed Functional Particles Rofiques Salehin Abstract It is common to manipulate fluid flow properties by infusing additives.
    [Show full text]
  • A Guide to Fabrication and Applications
    Nanomaterials A Guide to Fabrication and Applications © 2016 by Taylor & Francis Group, LLC Devices, Circuits, and Systems Series Editor Krzysztof Iniewski Emerging Technologies CMOS Inc. Vancouver, British Columbia, Canada PUBLISHED TITLES: Analog Electronics for Radiation Detection Renato Turchetta Atomic Nanoscale Technology in the Nuclear Industry Taeho Woo Biological and Medical Sensor Technologies Krzysztof Iniewski Building Sensor Networks: From Design to Applications Ioanis Nikolaidis and Krzysztof Iniewski Cell and Material Interface: Advances in Tissue Engineering, Biosensor, Implant, and Imaging Technologies Nihal Engin Vrana Circuits at the Nanoscale: Communications, Imaging, and Sensing Krzysztof Iniewski CMOS: Front-End Electronics for Radiation Sensors Angelo Rivetti CMOS Time-Mode Circuits and Systems: Fundamentals and Applications Fei Yuan Design of 3D Integrated Circuits and Systems Rohit Sharma Electrical Solitons: Theory, Design, and Applications David Ricketts and Donhee Ham Electronics for Radiation Detection Krzysztof Iniewski Electrostatic Discharge Protection: Advances and Applications Juin J. Liou Embedded and Networking Systems: Design, Software, and Implementation Gul N. Khan and Krzysztof Iniewski Energy Harvesting with Functional Materials and Microsystems Madhu Bhaskaran, Sharath Sriram, and Krzysztof Iniewski © 2016 by Taylor & Francis Group, LLC Devices, Circuits, and Systems PUBLISHED TITLES: Gallium Nitride (GaN): Physics, Devices, and Technology Farid Medjdoub Series Editor Krzysztof Iniewski Graphene,
    [Show full text]
  • 14Th U.S. National Congress on Computational Mechanics
    14th U.S. National Congress on Computational Mechanics Montréal • July 17-20, 2017 Congress Program at a Glance Sunday, July 16 Monday, July 17 Tuesday, July 18 Wednesday, July 19 Thursday, July 20 Registration Registration Registration Registration Short Course 7:30 am - 5:30 pm 7:30 am - 5:30 pm 7:30 am - 5:30 pm 7:30 am - 11:30 am Registration 8:00 am - 9:30 am 8:30 am - 9:00 am OPENING PL: Tarek Zohdi PL: Andrew Stuart PL: Mark Ainsworth PL: Anthony Patera 9:00 am - 9.45 am Chair: J.T. Oden Chair: T. Hughes Chair: L. Demkowicz Chair: M. Paraschivoiu Short Courses 9:45 am - 10:15 am Coffee Break Coffee Break Coffee Break Coffee Break 9:00 am - 12:00 pm 10:15 am - 11:55 am Technical Session TS1 Technical Session TS4 Technical Session TS7 Technical Session TS10 Lunch Break 11:55 am - 1:30 pm Lunch Break Lunch Break Lunch Break CLOSING aSPL: Raúl Tempone aSPL: Ron Miller aSPL: Eldad Haber 1:30 pm - 2:15 pm bSPL: Marino Arroyo bSPL: Beth Wingate bSPL: Margot Gerritsen Short Courses 2:15 pm - 2:30 pm Break-out Break-out Break-out 1:00 pm - 4:00 pm 2:30 pm - 4:10 pm Technical Session TS2 Technical Session TS5 Technical Session TS8 4:10 pm - 4:40 pm Coffee Break Coffee Break Coffee Break Congress Registration 2:00 pm - 8:00 pm 4:40 pm - 6:20 pm Technical Session TS3 Poster Session TS6 Technical Session TS9 Reception Opening in 517BC Cocktail Coffee Breaks in 517A 7th floor Terrace Plenary Lectures (PL) in 517BC 7:00 pm - 7:30 pm Cocktail and Banquet 6:00 pm - 8:00 pm Semi-Plenary Lectures (SPL): Banquet in 517BC aSPL in 517D 7:30 pm - 9:30 pm Viewing of Fireworks bSPL in 516BC Fireworks and Closing Reception Poster Session in 517A 10:00 pm - 10:30 pm on 7th floor Terrace On behalf of Polytechnique Montréal, it is my pleasure to welcome, to Montreal, the 14th U.S.
    [Show full text]
  • Magnetorheological Fluid and Its Applications
    International Journal of Current Engineering and Technology E-ISSN 2277 – 4106, P-ISSN 2347 – 5161 ©2017 INPRESSCO®, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Magnetorheological Fluid and its Applications Pranav Gadekar*, V.S.Kanthale and N.D.Khaire Mechanical Department, MITCOE, Pune University, Pune, Maharashtra, India Accepted 12 March 2017, Available online 16 March 2017, Special Issue-7 (March 2017) Abstract A Magneto rheological Fluid (MRF) is a Smart fluid whose viscosity can be varied by application of magnetic field. The MR Fluid has vast applications in various engineering as well as day to day life. There is huge potential that this revolutionary material will provide many leading edge applications. The fluid has applications in various fields such as automotive industry, household applications, prosthetics, civil engineering, hydraulics, brakes and clutches, etc. Also there is a possible application of the fluid in reducing the effect of Gun Recoil. This paper will describe these applications and working of proposed application. Keywords: MR Fluid, Viscosity, Dampers, Prosthetics, Gun Recoil. 1. Introduction To take full advantage of MRF technologythe base fluid must have a low viscosity and it should be constant 1 Rheos is a Greek word to Flow. Rheology is the science with temperature. This is required for variation due to if material flow under external load conditions. The applied magnetic field to be more effective than natural word Magnetorheological Fluid means fluid whose viscosity. The presences of suspended particles make apparent viscosity increases, with application of base fluid thicker. Commonly used base fluids are MAGNETIC field. Also known as MR fluids, these fluids mineral oils, hydrocarbon oils, and Silicon oils.
    [Show full text]
  • Magneto Static Analysis of Magneto Rheological Fluid Clutch
    IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3 Ver. V (May- Jun. 2016), PP 35-42 www.iosrjournals.org Magneto Static Analysis of Magneto Rheological Fluid Clutch 1 3 K. Hema Latha , P. UshaSri², N.Seetharamaiah 1Assistant Professor, Dept. of Mechanical Engineering, MJCET, Hyderabad-34, INDIA, 2Professor, Dept. of Mechanical Engineering,UCEOU (A), Hyderabad-7, INDIA, 3Professor, Dept. of Mechanical Engineering, MJCET. Hyderabad-34, INDIA, Abstract: Smart fluid is defined as a fluid that acts as a Newtonian fluid until a specific external magneticfiel d is applied .When the field of the properstreng this applied, micrometer- sized particles suspended in a dielectric carrier fluid will align such that the resistance to flow of thesmart fluid, the viscosity, significantly increases and thus the fluid becomes quasi solid. In thispaper the design of a Magneto rheological (MR) Fluid Clutch consisting of multi plates, electromagnet, housing and the magnetostatic Analysis of the same is presented. A MR Fluid Clutch, is a device to transmit torque by shear stress of MR fluids, has the property that its power transmissibility changes quickly in response to control signal. A 2D Axisymmetric model based on finite element method(FEM) concept has been developed on the ANSYS Platform to analyse and examine the MR Fluid Clutch characteristics. A prototype of the MR Fluid Clutc his fabricated based on the FEM model.Magneto staticAnalysis of the MR Fluid Clutch consisdered was performed for yielding the magneticfield density of the magnetic coil used in the armature. Keywords: Magnetorheological fluid clutch, Newtonian fluid, quasi solid, dielectric carrier fluid, magnetic field density.
    [Show full text]
  • Development of an Energy-Harvesting Magnetorheological Fluid Damper
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2016 Development of an energy-harvesting magnetorheological fluid damper Yun Lu University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Lu, Yun, Development of an energy-harvesting magnetorheological fluid damper, Master of Philosophy thesis, School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, 2016.
    [Show full text]
  • Karami, Amin CV
    M. A M I N K A R A M I 1013 Furnas Hall [email protected] State University of New York at Buffalo 716-645-5878 Buffalo, NY 14260-4400 https://ubwp.buffalo.edu/ideas EDUCATION VIRGINIA TECH Ph.D., Engineering Mechanics July 2011 Micro-Scale and Nonlinear Energy Harvesting. Blacksburg, VA Advisor: Prof. Daniel J. Inman. GPA: 4.0/4.0. THE UNIVERSITY OF M.A.Sc., Mechanical Engineering June 2006 BRITISH COLUMBIA Space Vehicle Motion Recovery in the Presence of Actuator Failure. Advisor: Prof. Farrokh Sassani. Vancouver, BC, GPA: 86/100. Canada SHARIF UNIVERSITY B.S., Mechanical Engineering July 2004 OF TECHNOLOGY Recognized as a student with special talent, ranked #3 in class of ~140. GPA: 18.05/20. Tehran, Iran ACADEMIC POSITIONS AUG 2013-PRESENT Assistant Professor, Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY AUG 2013-PRESENT Adjunct Assistant Research Scientist, Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI AUG 2012-AUG 2013 Research Fellow, Department of Aerospace Engineering, the University of Michigan, Ann Arbor, MI HONORS AND AWARDS Keynote Speaker 2016 Hong Kong Science Park Soft Landing program. Invited Speaker 2015 Medtronic Technical Forum, Minneapolis. Keynote Speaker 2015 MedTechWorld MD&M east medical conference, New York. Best Student Hardware Award 2011 ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems First Oral Presentation Award 2011 GSA Annual Symposium, Virginia Tech. Daniel Frederick Scholarship 2010 Virginia Tech. Invited Speaker at ICTAS seminar series 2009 Presenting the only student seminar, Virginia Tech. ICTAS Doctoral Fellowship 2007-2011 Full financial and travel support, ICTAS, Virginia Tech.
    [Show full text]
  • Advances in Liquid Metal-Enabled Flexible and Wearable Sensors
    micromachines Review Advances in Liquid Metal-Enabled Flexible and Wearable Sensors Yi Ren 1 , Xuyang Sun 2 and Jing Liu 1,2,* 1 Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; [email protected] 2 Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; [email protected] * Correspondence: [email protected]; Tel.: 86-10-62794896 Received: 8 January 2020; Accepted: 13 February 2020; Published: 15 February 2020 Abstract: Sensors are core elements to directly obtain information from surrounding objects for further detecting, judging and controlling purposes. With the rapid development of soft electronics, flexible sensors have made considerable progress, and can better fit the objects to detect and, thus respond to changes more sensitively. Recently, as a newly emerging electronic ink, liquid metal is being increasingly investigated to realize various electronic elements, especially soft ones. Compared to conventional soft sensors, the introduction of liquid metal shows rather unique advantages. Due to excellent flexibility and conductivity, liquid-metal soft sensors present high enhancement in sensitivity and precision, thus producing many profound applications. So far, a series of flexible and wearable sensors based on liquid metal have been designed and tested. Their applications have also witnessed a growing exploration in biomedical areas, including health-monitoring, electronic skin, wearable devices and intelligent robots etc. This article presents a systematic review of the typical progress of liquid metal-enabled soft sensors, including material innovations, fabrication strategies, fundamental principles, representative application examples, and so on.
    [Show full text]
  • Development of a Ferrofluid Based Soft Actuator Using Magnetic Field Optimization
    Development of a Ferrofluid Based Soft Actuator Using Magnetic Field Optimization by Tasnova Tanzil Khan A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering in Mechatronics Examination Committee: Dr. A.M. Harsha S. Abeykoon (Chairperson) Dr. Tanujjal Bora (Co-Chairperson) Prof. Manukid Parnichkun Dr. Gabriel Louis Hornyak Nationality: Bangladeshi Previous Degree: Bachelor of Science in Electrical and Electronic Engineering United International University, Bangladesh Scholarship Donor: AIT Fellowship Asian Institute of Technology School of Engineering and Technology Thailand May 2019 ACKNOWLEDGEMENTS I would like to show my heart felt gratitude to Dr. A.M. Harsha S. Abeykoon, my advisor, for his teaching, guidance, and suggestion during my academic period at AIT. I am also lucky to have him as my thesis advisor. I would also like to thank Dr. Tanujjal Bora, my Co-chairperson, for his valuable advice, guidance and motivation during my thesis. I also appreciate of Prof. Manukid Parnichkun and Dr. Gabriel Louis Hornyak for their constant invaluable comments and guidance. I am grateful to Asian Institute of Technology, for supporting me with fellowship to pursue Master of Engineering at AIT. Lastly, I am truly grateful to my mother, my husband, my daughter and all my family members and friends for the constant supports and motivation. ii ABSTRACT A new approach of ferrrofluid based soft actuator which shows various vertical motions has been introduced in this study. The flexibility and potential of the prototype made, was tested during this thesis by simulation and experimental approach. The simplicity of the design make the system more cost effective and readily made.
    [Show full text]
  • Magnetic Fluid Rheology and Flows
    Current Opinion in Colloid & Interface Science 10 (2005) 141 – 157 www.elsevier.com/locate/cocis Magnetic fluid rheology and flows Carlos Rinaldi a,1, Arlex Chaves a,1, Shihab Elborai b,2, Xiaowei (Tony) He b,2, Markus Zahn b,* a University of Puerto Rico, Department of Chemical Engineering, P.O. Box 9046, Mayaguez, PR 00681-9046, Puerto Rico b Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science and Laboratory for Electromagnetic and Electronic Systems, Cambridge, MA 02139, United States Available online 12 October 2005 Abstract Major recent advances: Magnetic fluid rheology and flow advances in the past year include: (1) generalization of the magnetization relaxation equation by Shliomis and Felderhof and generalization of the governing ferrohydrodynamic equations by Rosensweig and Felderhof; (2) advances in such biomedical applications as drug delivery, hyperthermia, and magnetic resonance imaging; (3) use of the antisymmetric part of the viscous stress tensor due to spin velocity to lower the effective magnetoviscosity to zero and negative values; (4) and ultrasound velocity profile measurements of spin-up flow showing counter-rotating surface and co-rotating volume flows in a uniform rotating magnetic field. Recent advances in magnetic fluid rheology and flows are reviewed including extensions of the governing magnetization relaxation and ferrohydrodynamic equations with a viscous stress tensor that has an antisymmetric part due to spin velocity; derivation of the magnetic susceptibility
    [Show full text]
  • A Study of Active Engine Mounts
    A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Tekniska Högskolan i Linköping av Fredrik Jansson & Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Linköping 2003 F. JANSSON O. JOHANSSON A Study of Active Engine Mounts Examensarbete utfört i Reglerteknik vid Linköpings tekniska högskola av Fredrik Jansson och Oskar Johansson Reg nr: LiTH-ISY-EX-3453-2003 Supervisor: Andreas Eidehall Linköpings Universitet Claes Olsson Volvo Car Corporation Examiner: Professor Fredrik Gustafsson Linköpings Universitet Linköping 17th December 2003 F. JANSSON O. JOHANSSON A STUDY OF ACTIVE ENGINE MOUNTS Avdelning, Institution Datum Division, Department Date 2003-12-17 Institutionen för systemteknik 581 83 LINKÖPING Språk Rapporttyp ISBN Language Report category Svenska/Swedish Licentiatavhandling X Engelska/English X Examensarbete ISRN LITH-ISY-EX-3453-2003 C-uppsats D-uppsats Serietitel och serienummer ISSN Title of series, numbering Övrig rapport ____ URL för elektronisk version http://www.ep.liu.se/exjobb/isy/2003/3453/ Titel Studie av aktiva motorkuddar Title A Study of Active Engine Mounts Författare Fredrik Jansson and Oskar Johansson Author Sammanfattning Abstract Achieving better NVH (noise, vibration, and harshness) comfort necessitates the use of active technologies when product targets are beyond the scope of traditional passive insulators, absorbers, and dampers. Therefore, a lot of effort is now being put in order to develop various active solutions for vibration control, where the development of actuators is one part. Active hydraulic engine mounts have shown to be a promising actuator for vibration isolation with the benefits of the commonly used passive hydraulic engine mounts in addition to the active ones.
    [Show full text]
  • Soft Matter REVIEW
    View Online / Journal Homepage Soft Matter Dynamic Article LinksC< Cite this: DOI: 10.1039/c2sm26286j www.rsc.org/softmatter REVIEW Smart electroresponsive droplets in microfluidics Jinbo Wu,a Weijia Wen*a and Ping Sheng*ab Received 4th June 2012, Accepted 26th August 2012 DOI: 10.1039/c2sm26286j We give a short review of droplet microfluidics with the emphasis on ‘‘smart’’ droplets, which are based on materials that can be actively controlled and manipulated by external stimuli such as stress, temperature, pH, and electric field or magnetic field. In particular, the focus is on the generation and manipulation of droplets that are based on the giant electrorheological fluid (GERF). We elaborate on the preparation and characteristics of the GERF, the relevant microfluidics chip format, and the generation and control of droplets using GERF as either droplets or the carrier fluid. An important application of the GERF droplets, in the realization of first universal microfluidic logic device which can execute the 16 Boolean logic operations, is detailed. I. Introduction chemists, biologists and others can interact and innovate on a th vast array of research directions and applications that range In the late 1980s, at the 5 International Conference on Solid- from sensors, chemical/biological synthesis, microreactors, to State Sensors and Actuators, Manz and collaborators advanced drug discovery and point-of-care (POC) diagnostic.1–3 Micro- 1 m the concept of ‘total chemical analysis system ( TAS)’ that fluidics technology has been employed in the development of emphasized the importance of microdevices in chemistry and inkjet print-heads,4 lab-on-a-chip technology,5 microthermal bio-testing.
    [Show full text]