Recovering Bioresources from Integrated Photo-Bioelectrochemical System" (2013)
Total Page:16
File Type:pdf, Size:1020Kb
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations 12-1-2013 Recovering Bioresources from Integrated Photo- Bioelectrochemical System Li Xiao University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Environmental Engineering Commons Recommended Citation Xiao, Li, "Recovering Bioresources from Integrated Photo-Bioelectrochemical System" (2013). Theses and Dissertations. 444. https://dc.uwm.edu/etd/444 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. RECOVERING BIORESOURCES FROM INTEGRATED PHOTO- BIOELECTROCHEMICAL SYSTEM by Li Xiao A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Engineering at The University of Wisconsin-Milwaukee December 2013 ABSTRACT RECOVERING BIORESOURCES FROM INTEGRATED PHOTO-BIOELECTROCHEMICAL SYSTEM by Li Xiao The University of Wisconsin-Milwaukee, 2013 Under the Supervision of Professor Zhen He Compared to traditional wastewater treatment technologies, the electricity generation is one of the most important advantages of bioelectrochemical systems (BES). However, due to its high cost and low energy production, BES technologies are still far away from feasible application. The main purpose of this work was to investigate ways to improve the electricity generation and reduce the cost of BES technologies. We focused on microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) as two representative BES technologies. In order to improve the energy performance of MFCs, an accurate evaluation of the energy is necessary. However, the common evaluation methods of the energy performance in most MFC related studies prevent the meaningful comparison between different MFCs, and hence impede the further development of MFC technologies. So this study developed a new parameter, normalized energy recovery, to evaluate the energy performance of MFCs. Electrode materials are the main expense for the construction of BES and they have a significant effect on the performance of BES. Crumpled graphene and carbon/iron-based nanorod catalyst are relatively low-cost materials, so were applied in BES to improve their performance. Also, a novel system, integrated photo-bioelectrochemical (IPB) system, was developed to integrate algal ii technology and MFCs. The IPB system can efficiently remove the organics and nutrients in the wastewater and produce electricity and biomass. iii ○C Copyright by Li Xiao, 2013 All Rights Reserved iv Table of Contents List of figures ................................................................................................................... vii List of tables........................................................................................................................x List of abbreviations ........................................................................................................ xi Acknowledgements ......................................................................................................... xii 1 Introduction .....................................................................................................................1 1.1 Energy issues ..............................................................................................................1 1.2 Microbial fuel cells .....................................................................................................3 1.2.1 Principle of MFCs ...............................................................................................3 1.2.2 The expression for the performance of MFCs .....................................................5 1.2.3 Materials used in MFCs.......................................................................................8 1.2.4 Configurations of MFCs ....................................................................................10 1.2.5 Factors on the performance of MFCs ................................................................12 1.3 Microbial electrolysis cells .......................................................................................15 1.4 Objectives of the thesis ............................................................................................16 2 Evaluation of normalized energy recovery (NER) in tubular microbial fuel cells .17 2.1 Introduction ..............................................................................................................17 2.2 Materials and methods .............................................................................................20 2.3 Results and discussion ..............................................................................................23 2.4 Conclusions ..............................................................................................................36 3 Nano-materials modified electrodes ............................................................................38 3.1 Crumpled graphene particles for microbial fuel cell electrodes...............................38 3.1.1 Introduction .......................................................................................................38 3.1.2 Materials and methods .......................................................................................42 3.1.3 Results ...............................................................................................................45 3.1.4 Discussion..........................................................................................................53 3.1.5 Conclusions .......................................................................................................57 v 3.2 Carbon/Iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells .............................................................................................................58 3.2.1 Introduction .......................................................................................................58 3.2.2 Materials and methods .......................................................................................60 3.2.3 Results and discussions .....................................................................................64 3.2.4. Conclusions ......................................................................................................69 4 Integrated photo-bioelectrochemical systems ............................................................70 4.1 Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production ......................................................................................................70 4.1.1 Introduction .......................................................................................................70 4.1.2 Materials and methods .......................................................................................73 4.1.3 Results and discussion .......................................................................................79 4.2 Integrated photo-bioelectrochemical system affected by algal sources ...................93 4.2.1 Introduction .......................................................................................................93 4.2.2 Materials and methods .......................................................................................96 4.2.3 Results and discussion .......................................................................................98 4.2.4 Future Work.....................................................................................................103 5 Perspective ...................................................................................................................104 References .......................................................................................................................107 vi LIST OF FIGURES Figure 1. Energy use per capita and per dollar of gross domestic product, 1980-2040 (index, 1980 = 1) [5]. ............................................................................................................................................. 2 Figure 2. Primary energy production by sources [5]........................................................................ 2 Figure 3. A schematic diagram of an MFC (pink box: anode chamber; blue box: cathode chamber; yellow line: membrane; black bars: electrodes) .............................................................................. 4 Figure 4. Several configurations of microbial fuel cells in our lab (A: “H” type MFC; B: plat MFC; C: tubular MFC; D: single chamber; E: sediment MFC) ...................................................................... 11 Figure 5. Schematic diagram of a microbial electrolysis cell (pink box: anode chamber; blue box: cathode chamber; yellow line: membrane; black bars: electrodes) ............................................... 15 Figure 6. Variation of power or energy data along current density in the MFCs with different diameters at the same anolyte flowrate: (A) power curves; (B) NERV; and (C) NERS. ................ 24 Figure 7. Variation of power or energy data vs. current density in the MFCs with different diameters at the same anolyte HRT: (A) power curves; (B) NERV; and (C) NERS. .......................... 25 Figure 8. Comparaison of the maximum