University of California
Los Angeles
Metric Geometry in a Tame Setting
A dissertation submitted in partial satisfaction
of the requirements for the degree
Doctor of Philosophy in Mathematics by
Erik Walsberg
2015
- c
- ꢀ Copyright by
Erik Walsberg
2015
Abstract of the Dissertation
Metric Geometry in a Tame Setting
by
Erik Walsberg
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2015 Professor Matthias J. Aschenbrenner, Chair
We prove basic results about the topology and metric geometry of metric spaces which are
definable in o-minimal expansions of ordered fields. ii
The dissertation of Erik Walsberg is approved.
Yiannis N. Moschovakis Chandrashekhar Khare
David Kaplan
Matthias J. Aschenbrenner, Committee Chair
University of California, Los Angeles
2015
iii
To Sam.
iv
Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Metric Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Maps Between Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Covers and Packing Inequalities . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 The 5r-covering Lemma . . . . . . . . . . . . . . . . . . . . . . . . .
7
7899
3.3.2 Doubling Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Hausdorff Measures and Dimension . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.1 Hausdorff Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4.2 Hausdorff Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Topological Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 Left-Invariant Metrics on Groups . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 Reductions, Ultralimits and Limits of Metric Spaces . . . . . . . . . . . . . . 16
3.7.1 Reductions of Λ-valued Metric Spaces . . . . . . . . . . . . . . . . . . 16 3.7.2 Ultralimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7.3 GH-Convergence and GH-Ultralimits . . . . . . . . . . . . . . . . . . 18 3.7.4 Asymptotic Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.7.5 Tangent Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.7.6 Conical Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 T-Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 T-convex Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 The (K, O)-approximation Lemma . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Imaginaries in Real Closed Valued Fields . . . . . . . . . . . . . . . . . . . . 27 4.4 Uniform Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Definition and Examples of Definable Metric Spaces . . . . . . . . . . . . 30
5.1 Definable Sets with Euclidean Metrics . . . . . . . . . . . . . . . . . . . . . 30 5.2 Products, Sums and Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
v
5.2.2 Disjoint Sums and Wedge Sums . . . . . . . . . . . . . . . . . . . . . 31 5.2.3 The Euclidean Cone over a Metric Spaces . . . . . . . . . . . . . . . 31
5.3 Snowflakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Infinite Hausdorff Measure and Dimension . . . . . . . . . . . . . . . 32
5.4 Metrics Defined using the Logarithm . . . . . . . . . . . . . . . . . . . . . . 33
5.4.1 Hyperbolic Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.4.2 The Hyperbolic Cone over a Definable Metric Space . . . . . . . . . . 34 5.4.3 Noncompact Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . 34 5.4.4 Hilbert Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.5 Approximate Ultrametrics . . . . . . . . . . . . . . . . . . . . . . . . 34 5.4.6 Multiplicative Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Carnot Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.6 Euclidean Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.7 Metrics Associated To Definable Families . . . . . . . . . . . . . . . . . . . . 37
5.7.1 Hausdorff Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.7.2 Metric Associated To Definable Families of Functions . . . . . . . . . 37 5.7.3 Examples constructed using the CLR-volume Theorem . . . . . . . . 37
5.8 Definable Metrics with Noneuclidean Topology . . . . . . . . . . . . . . . . . 38
5.8.1 Discrete Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.8.2 A Definable Metric Space with Cantor Rank 1 . . . . . . . . . . . . . 39 5.8.3 Metric Spaces Associated to Definable Simplicial Complexes . . . . . 39 5.8.4 Cayley Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.9 Subriemannian Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6 O-minimal Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1 Generic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6.2 Hausdorff Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.3 One-Variable Definable Functions . . . . . . . . . . . . . . . . . . . . . . . . 48 6.4 A Polynomial Volume Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Basics on Definable Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . 50
7.1 Definable Completeness And Compactness . . . . . . . . . . . . . . . . . . . 50 7.2 The Definable Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8 Gromov-Hausdorff Limits of Definable Metric Spaces . . . . . . . . . . . . 57
8.1 Uniqueness of GH-Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
vi
8.2 GH-Limits and Pointwise Limits . . . . . . . . . . . . . . . . . . . . . . . . . 59
9 Topology of Definable Metric Spaces . . . . . . . . . . . . . . . . . . . . . . 61
9.1 Definably Separable Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . 61 9.2 A Definable Compactification . . . . . . . . . . . . . . . . . . . . . . . . . . 62 9.3 Covering Definably Compact Metric Spaces . . . . . . . . . . . . . . . . . . 69 9.4 Product Structure of General Definable Metric Spaces . . . . . . . . . . . . . 72 9.5 Topological Dimension of Definable Metric Spaces . . . . . . . . . . . . . . . 74
10 Metric Geometry of Definable Metric Spaces . . . . . . . . . . . . . . . . . 76
10.1 A Lower Bound on d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 10.2 Upper Bounds on d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 10.3 Fine Hausdorff Dimension and Hausdorff Dimension . . . . . . . . . . . . . . 83
10.3.1 Fine Hausdorff Dimension . . . . . . . . . . . . . . . . . . . . . . . . 83
10.3.2 Hausdorff Dimension and Fine Hausdorff Dimension of Definable Met-
ric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4 Tangent Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 10.5 Semilinear Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10.6 Doubling Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
¯
11 Ran-definable Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.1 The CLR Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 11.2 Tangent Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 11.3 Hausdorff Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 11.4 Weak Precompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
12 GH-limits of Semialgebraic Families of Metric Spaces . . . . . . . . . . . . 103
12.1 Definability of GH-limits of Sequences of Elements of X . . . . . . . . . . . . 103 12.2 Further Results on GH-limits . . . . . . . . . . . . . . . . . . . . . . . . . . 105 12.3 GH-ultralimits of Sequences of Elements of X . . . . . . . . . . . . . . . . . 109
12.3.1 Applications of Weak Precompactness . . . . . . . . . . . . . . . . . 110
13 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
vii
Acknowledgments
I must thank many people. I thank my parents, for support. Thanks to my mother for pointing out the math books in the Tempe public library. I thank my advisor, Matthias Aschenbrenner, for greatly improving my writing, for allowing me to pursue my own ideas, and for tolerating a far-from-ideal student. Thanks to Samantha Xu for telling me to ignore the audience. I would like to thank my professors at ASU: Matthias Kawski, John Quigg and Jack Spielberg. I would like to thank Wayne Raskind for telling me to apply to UCLA. Thanks to my professors in Budapest: to Gabor Elek for his teaching and to Mikl´os Erd´elyiSzabo´ for his model theory class (this is all his fault). Thanks to Yiannis Moschovakis for the gift of a computer on which much of this thesis was written. Thanks to the logic group at UCLA. Thanks to Sherwood Hachtman and Siddharth Bhaskar. I thank the logic group in Urbana for hospitality during Fall 2014. I thank Deirdre Haskell and Ehud Hrushovksi for useful conversations concerning the material in Chapter 11. Thanks to Bill Chen for games of ping pong and badminton. Thanks to Ashay Burungale for the movies. Thanks to Paul
White, for thirteen years of friendship. Thanks to Ben Hayes and Stephanie Lewkiewicz.
Thanks Alan Mackey for uniting our powers. Thanks to all the friends I had in the UCLA math department, too many to name. For five years you made this place home.
viii
Vita
- 2006-2010
- B.S. in Mathematics at Arizona State University.
ix
CHAPTER 1 Introduction
In this chapter we assume that R is an o-minimal expansion of the real field. By “definable” we mean “R-definable, possibly with parameters from R”. Much of our work is done over