Szczecin Lagoon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Risk Assessment of Virus Infections in the Oder Estuary (Southern Baltic) on the Basis of Spatial Transport and Virus Decay Simulations
International Journal Int. J. Hyg. Environ. Health 203, 317-325 (2001) © Urban & Fischer Verlag of Hygiene and http://www.urbanfischer.de/journals/intjhyg Environmental Health Risk assessment of virus infections in the Oder estuary (southern Baltic) on the basis of spatial transport and virus decay simulations Gerald Schernewski1, Wolf-Dieter Jülich2 1 Baltic Sea Research Institute Warnemünde, Rostock-Warnemünde, Germany 2 Institute of Pharmacy, University of Greifswald, Germany Received September 13, 2000 · Accepted January 09, 2001 Abstract The large Oder (Szczecin) Lagoon (687 km2) at the German-Polish border, close to the Baltic Sea, suffers from severe eutrophication and water quality problems due to high discharge of water, nu- trients and pollutants by the river Oder. Sewage treatment around the lagoon has been very much improved during the last years, but large amounts of sewage still enter the Oder river. Human path- ogenic viruses generally can be expected in all surface waters that are affected by municipal sewage. There is an increasing awareness that predisposed persons can be infected by a few infective units or even a single active virus. Another new aspect is, that at least polioviruses attached to suspend- ed particles can be infective for weeks and therefore be transported over long distances. Therefore, the highest risk of virus inputs arise from the large amounts of untreated sewage of the city of Szcze- cin (Poland), which are released into the river Oder and transported to the lagoon and the Baltic Sea. Summer tourism is the most important economical factor in this coastal region and further growth is expected. -
Lake Profile Brief This Is Based on the Results of Multiple Lake Threat Assessment and Its Scenario Analysis
Lake Profile Brief This is based on the results of Multiple Lake Threat Assessment and its Scenario Analysis. Refer to the Technical Report for details. Szczecin Lagoon Geographic Information The Szczecin Lagoon is an inland water basin, a lagoon of the Oder River, in the southwestern part of the Baltic Sea, and exhibits the characteristics of a coastal lake. It empties into a bay of the Baltic Sea via three straits that divide the mainland and several islands. The major freshwater inflow is the Oder River. A channel was opened more than a century ago to connect the lagoon with the Baltic Sea for ship passage. The lagoon has been an important fishing grounds for centuries, and has become a tourist destination as well since the 20th Century, offering passenger ship tours, various water sports and some noteworthy beaches. It is currently being threated from pollution from the Oder River, including increased eutrophication. TWAP Regional Eastern Europe; Northern, Lake Basin Population (2010) 16,862,454 Designation Western & Southern Europe Lake Basin Population Density River Basin Oder 67.1 (2010; # km‐2) Average Basin Precipitation Riparian Countries Germany, Poland 580.0 (mm yr‐1) Basin Area (km2) 144,845 Shoreline Length (km) 515.9 Lake Area (km2) 822.4 Human Development Index (HDI) 0.83 Lake Area:Lake Basin International Treaties/Agreements 0.006 No Ratio Identifying Lake Szczecin Lagoon Basin Characteristics (a) Szczecin Lagoon basin and associated transboundary water systems (b) Szczecin Lagoon basin land use Szczecin Lagoon Threat Ranking A serious lack of global‐scale uniform data on the TWAP transboundary in‐lake conditions required their potential threat risks be estimated on the basis of the characteristics of their drainage basins, rather than in‐lake conditions. -
The River Odra Estuary As a Gateway for Alien Species Immigration to the Baltic Sea Basin Das Oderästuar Als Pfad Für Die Einwanderung Von Alienspezies in Die Ostsee
Acta hydrochim. hydrobiol. 27 (1999) 5, 374-382 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0323 - 4320/99/0509-0374 $ 17.50+.50/0 The River Odra Estuary as a Gateway for Alien Species Immigration to the Baltic Sea Basin Das Oderästuar als Pfad für die Einwanderung von Alienspezies in die Ostsee Dr. Piotr Gruszka Department of Marine Ecology and Environmental Protection, Agricultural University in Szczecin, ul. Kazimierza Królewicza 4/H, PL 71-550 Szczecin, Poland E-mail: [email protected] Summary: The river Odra estuary belongs to those water bodies in the Baltic Sea area which are most exposed to immigration of alien species. Non-indigenous species that have appeared in the Szczecin Lagoon (i.a. Dreissena polymorpha, Potamopvrgus antipodarum, Corophium curvispinum) and in the Pomeranian Bay (Cordylophora caspia, Mya arenaria, Balanus improvisus, Acartia tonsa) in historical time and which now are dominant components of animal communities there as well as other and less abundant (or less common) alien species in the estuary (e.g. Branchiura sowerbyi, Eriocheir sinensis, Orconectes limosus) are presented. In addition, other newcomers - Marenzelleria viridis, Gammarus tigrinus, and Pontogammarus robustoides - found in the estuary in the recent ten years are described. The significance of the sea and inland water transport in the region for introduction of non-indigenous species is discussed against the background of the distribution pattern of these recently introduced polychaete and gammarid species. Keywords: Alien Species, Marenzelleria viridis, Gammarus tigrinus, Pontogammarus robustoides, River Odra Estuary Zusammenfassung: Das Oderästuar gehört zu den Bereichen der Ostsee, die am meisten der Einwanderung von Alienspezies ausgesetzt sind. -
Managing Eutrophication in the Szczecin (Oder) Lagoon-Development, Present State and Future Perspectives
ORIGINAL RESEARCH published: 16 January 2019 doi: 10.3389/fmars.2018.00521 Managing Eutrophication in the Szczecin (Oder) Lagoon-Development, Present State and Future Perspectives René Friedland 1*, Gerald Schernewski 1,2, Ulf Gräwe 1, Inga Greipsland 3, Dalila Palazzo 1,4 and Marianna Pastuszak 5 1 Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany, 2 Klaipeda University Marine Science and Technology Center, Klaipeda,˙ Lithuania, 3 Norwegian Institute of Bioeconomy Research, Ås, Norway, 4 STA Engineering, Pinerolo, Italy, 5 National Marine Fisheries Research Institute, Gdynia, Poland High riverine nutrient loads caused poor water quality, low water transparency and an unsatisfactory ecological status in the Szczecin (Oder) Lagoon, a trans-boundary water at the southern shore of the Baltic Sea. Total annual riverine N (P) loads into the lagoon raised at the 20th century from approximately 14,000 t TN (1,000 t TP) to 115,000 t TN (10,500 t TP) in the 1980ties and declined to about 56,750 t TN (2,800 t TP) after 2010. Nutrient concentrations, water transparency (Secchi depth) and chlorophyll-a showed a Edited by: positive response to the reduced nutrient loads in the Polish eastern lagoon. This was not Marianne Holmer, the case in the German western lagoon, where summer Secchi depth is 0.6 m and mean University of Southern Denmark, Denmark chlorophyll-a concentration is four times above the threshold for the Good Ecological Reviewed by: Status. Measures to improve the water quality focused until now purely on nutrient load Angel Pérez-Ruzafa, reductions, but the nutrient load targets and Maximal Allowable Inputs are contradicting University of Murcia, Spain Nafsika Papageorgiou, between EU Water Framework Directive and EU Marine Strategy Framework Directive. -
1 Co? Was? German-Polish Linguistic Attitudes in Frankfurt (Oder)
Co? Was ? German-Polish Linguistic Attitudes in Frankfurt (Oder) Megan Clark Senior Linguistics Thesis Bryn Mawr College 2010 In this study I analyze the linguistic attitudes held by Polish and German speakers in the border towns of Frankfurt an der Oder, Germany and Słubice, Poland, held together by a cross-border university. I consider the historical background in the relationship between the two communities, including but not limited to the effect of Germany and Poland’s separate entrances into the European Union and Schengen zone, which have divided the two countries until recently, as well as the adoption of the Euro in both Germany and, later, Poland. With consideration of this history, I explore the concept of linguistic attitudes in other border communities to mark parallels and differences in the attitudes of speakers on each side of the border, most notably different because of the presence of the university on both sides of the dividing river. I supplement this research with a study conducted on speakers themselves within each side of the community to explore the underlying thoughts and ideas behind attitudes toward speakers of the other language, investigating why so many Polish speakers are fluent in German, while only a few German students endeavor to learn Polish. The research we have conducted here explores a very important aspect of language attitudes as a proxy for European geo-political relations as exemplified in the role of Poland as an outlier in the European Union due to its late joining and reluctant acceptance of the Euro. Though student relations on the border are strong, the heart of Słubice remains untouched by German residents, despite full osmosis of Polish citizens into the heart of Frankfurt. -
Eutrophication of the Shallow Szczecin Lagoon (Baltic Sea)
Transactions on the Built Environment vol 58 © 2001 WIT Press, www.witpress.com, ISSN 1743-3509 Eutrophication of the shallow Szczecin Lagoon (Baltic Sea): modelling, management and the impact of weather I Baltic Sea Research Institute, Warnemiinde, Germany 2 Sea Fisheries Institute, Gdynia, Poland Abstract The Oder estuary, especially the large, shallow Szczecin (Oder) Lagoon (687 W, average depth 3.8 m) suffers from severe and ongoing eutrophication due to heavy loads, mainly by the Oder river. Poor water quality nowadays is a main obstacle for further touristic development around the lagoon. Long-term nutrient concentrations show a high interannual variability and a decline during recent years. Using a simple eutrophication box model and comparing dry, warm years (1989-1991) with colder, wet years (1986-1988) we analyse the impact of inter- annual and short-term weather conditions on the eutrophication process. Internal nutrient cycling processes in the lagoon are mainly driven by short- term weather conditions. During rare and short calm summer periods a stratifica- tion and oxygen depletion above the sediment is hkely. Coarse model-based es- timations indicate an anoxic P-release fiom sedirnents of up to 10 pm01 P m-3d-' or up to 400-600 t P for the entire lagoon. These situations are restricted to sev- eral days and occur only in a few years. Wind with a daily average velocity above 2-3 mis cause mixing and put an end to anoxic P-release. Compared to a monthly summer load of 100-150 t P by the Oder river, internal eutrophication in the lagoon is important, but has no pronounced effect on biology. -
Modeling Water Exchange in the Oder River Mouth Area
Oceanological and Hydrobiological Studies International Journal of Oceanography and Hydrobiology Vol. XXXVI, No.1 Institute of Oceanography (55-67) University of Gdańsk 2007 Received: July 01, 2006 DOI 10.2478/v10009-007-0002-9 Research Paper Accepted: February 13, 2007 Modeling water exchange in the Oder River mouth area Halina Kowalewska-Kalkowska1, Marek Kowalewski2 1Institute of Marine Sciences, University of Szczecin ul. Wąska 13, 71-415 Szczecin, Poland 2Institute of Oceanography, University of Gdańsk al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland Key words: numerical modeling, water exchange, Oder River mouth Abstract A three-dimensional operational hydrodynamic model of the Baltic Sea (M3D_UG) developed based on the Princeton Ocean Model (POM) was applied to model water exchange in the Oder River mouth area. Due to wind-driven back flow in the Oder mouth, a simplified operational model of river discharge was also developed based on the water budget in a stream channel. Linking the Oder discharge and Baltic Sea models into a single system allowed simulating hydrodynamic conditions in the Szczecin Lagoon and the Pomeranian Bay. Since the model adequately approximates hydrodynamic variability, it is a reliable tool for modeling water exchange in the Oder River mouth area and for assessing Oder water spread in the Baltic Sea. 1 Corresponding author: [email protected] Copyright© by Institute of Oceanography, University of Gdańsk, Poland www.oandhs.org 56 H. Kowalewska-Kalkowska, M. Kowalewski INTRODUCTION Situated in the southern Baltic Sea, the Oder River mouth is an area where fresh and brackish waters mix. In its downstream reaches, the Oder River discharges into the Szczecin Lagoon, which is a coastal water body of approximately 680 km2 with a mean depth of 3.8 m. -
Coastal Abrasion of the Swina Gate Sandbar (Pomeranian Bay Coast) Caused by the Heavy Storm Surge on 15 October 2009
Storm Surges Congress, Hamburg, Germany 13–17 September 2010 SSC2010-83 © Author(s) 2010 Coastal abrasion of the Swina Gate Sandbar (Pomeranian Bay coast) caused by the heavy storm surge on 15 October 2009 T.A. Labuz (1) and H. Kowalewska-Kalkowska (2) (1) Institute of Marine Sciences, University of Szczecin, Szczecin, Poland ([email protected]), (2) Institute of Marine Sciences, University of Szczecin, Szczecin, Poland ([email protected]) The Swina Gate Sandbar (the southern Baltic Sea) is exposed to coastal retreat caused by storm surges occurring during autumn-winter season. In the present study a detailed analysis of changes in the coastal relief of the sandbar during the 15 October 2009 storm surge is presented. At the Pomeranian Bay coast, storm surges are associated with the passages of low-pressure systems entering the Baltic Sea from SW to NW, producing onshore northwesterly to northeasterly winds. The most catastrophic surges are observed with a sea level 1.0 m above its mean state. In those cases the sea floods the beach and overflows over the low ridges up to 3.0-3.2 m above MSL. Over the recent years, at the Pomeranian Bay coasts the highest sea level of 1.85 m above MSL was observed in early November 1995. The 15 October 2009 storm surge with maximum sea height reaching 1.49 m above MSL in Swinoujscie (0.69 m above the alarm level) was one of the most severe storm events. The studied area is a sandbar located on the coast of the Pomeranian Bay where the Swina Strait (the main outlet of the Odra River) connects the Baltic Sea with the Szczecin Lagoon. -
The Polish Baltic Sea Offshore Wind Potential
The Polish Baltic Sea Offshore Wind Potential: When Will the Dedicated Support Scheme Mechanism for Offshore Wind in Poland Be Presented? by Henry Davey, Robert Ryszard Broom and Igor Hanas Poland has huge potential in the Baltic Sea with 10GW of offshore Figure 1: Poland’s energy mix in 2017 (by source in wind envisaged to be built by 2040 to help reduce carbon emissions public supply of electricity). and fill a potential capacity gap created by no new coal generation being built to accommodate growing demand. A comprehensive offshore wind act with direct support for the first wave of projects is eagerly anticipated by the Polish offshore wind industry to kick- start the first wave of prospective projects. During an Economic Congress held in mid-May, in Katowice, Poland, officials from Poland’s Ministry of Energy presented on ways to develop Poland’s renewable energy sources sector that match EU requirements and are reflective of the Polish energy sector needs and structure. Offshore wind was highlighted as a key component of Poland’s future generation mix as part of its transition towards renewable energy diversification. We take a look at the prospects for offshore wind in Poland and the latest developments for this technology in the Polish energy sector. Energy Policy of Poland Until 2040 According to the Polish government’s Draft Energy Policy of Poland until 2040 (which contains the main strategic objectives for the country’s energy sector) (the Energy Policy),1 apart from nuclear power plants and photovoltaics, offshore wind energy is to be a key component in the Polish energy transformation. -
Water Quality in the Central Reach of the Ina River (Western Pomerania, Poland)
Pol. J. Environ. Stud. Vol. 24, No. 1 (2015), 207-214 DOI: 10.15244/pjoes/26971 Original Research Water Quality in the Central Reach of the Ina River (Western Pomerania, Poland) Arkadiusz Nędzarek*, Małgorzata Bonisławska, Agnieszka Tórz, Anna Gajek, Marlena Socha, Filip Bronisław Harasimiuk Department of Water Sozology, West Pomeranian University of Technology in Szczecin, K. Królewicza 4, 71-550 Szczecin, Poland Received: 23 April 2014 Accepted: 8 July 2014 Abstract Our paper presents a study on the middle reaches of the Ina River. Select physical and chemical indica- tors were analyzed in order to evaluate water quality. It was determined that the studied river was subjected to strong anthropopressure, and factors declassifying river water included CODCr, TP, general hardness, and alcalinity. A high level of biogenic elements was additionally increased by pollution discharged to the river in the proximity of a factory specializing in agricultural production and processing food and agricultural produce near the town of Stargard Szczeciński. The process of self-purification was noted, which can be considered as a factor modifying changes and dynamics of nitrogen and phosphorus in the studied river, leading to an inter- nal enrichment with biogenic elements. Those processes were multi-directional as confirmed by PCA analy- sis, where component 1 accounted for just 36.7% of the total variance, and the total variance exceeding 90.0% was only noted for 7 components. Keywords: water pollution, nutrients, organic matter, Ina River Introduction include agriculture, industry, and urbanization. The supply of pollution from these sources affects water quality in the Physical and chemical properties of river water are river and its biocenosis. -
Ecological-Social-Economic Assessment of Zebra-Mussel Cultivation Scenarios for the Oder (Szczecin) Lagoon
Journal of Coastal Conservation https://doi.org/10.1007/s11852-018-0649-2 Ecological-social-economic assessment of zebra-mussel cultivation scenarios for the Oder (Szczecin) Lagoon Gerald Schernewski1,2 & Rene Friedland1 & Anna-Lucia Buer1 & Sven Dahlke3 & Birte Drews1,4 & Svenja Höft1 & Tobias Klumpe5,4 & Mareike Schadach1,4 & Johanna Schumacher1 & Anastasija Zaiko2,6 Received: 8 February 2018 /Revised: 2 August 2018 /Accepted: 9 August 2018 # The Author(s) 2018 Abstract The Systems Approach Framework with an integrated Ecological-Social-Economic assessment was applied to address the issue of zebra mussel (Dreissena polymorpha) farming in the large Oder (Szczecin) Lagoon, southern Baltic Sea. Heavy eutrophication hampers the use of the lagoon and zebra mussel farming is considered as new use and potential measure to improve water quality. Three alternative scenarios were developed in interaction with local stakeholders: 1) the production of mussels as fresh feed and meal on a commercial basis seemed not profitable, because of a limited market for fresh mussels (zoos, aquaculture) and low prices for organic feed. 2) Mussel cultivation to improve transparency and attractiveness of bathing waters near beaches had only a limited potential (0.2 m improvement of Secchi depth). A higher mussel biomass would increase the risk of temporary hypoxia. 3) Mussels farms for improving the environmental status (according to EU Water Framework Directive) by supporting macrophyte restoration were considered as the most promising scenario. Our model simulations suggested that as soon as a compensation for nutrient removal is considered, all mussel farm scenarios could cover the costs. Experiments and literature confirm that the conditions for an environmental friendly farming approach in the lagoon are suitable. -
Spis Treści • Contents • Inhaltsyerzeichnis
SPIS TREŚCI • CONTENTS • INHALTSYERZEICHNIS WPROWADZENIE 7 INTRODUCTION 12 EINFUHRUNG 17 PAS NADMORSKI 23 • THE COASTAL BELT • KUSTENSTREIFEN W KLIMACIE MORZA I FORTOW (powiał grodzki Świnoujście) 24 • IN THE CLIMATE OF THE SEA AND FORTS (County of Świnoujście) • IM KLIMA DER SEE UND DER FORTE (Landkreis Świnoujście) Świnoujście (Swinemunde) 24 Karsibór (Kaseburg) 29 W RĘKACH POTĘŻNYCH BISKUPÓW (powiat kamieński) 31 • IN THE HANDS OF MIGHTY BISHOPS (County of Kamień Pomorski) • IN DEN HANDEN MACHTIGER BISCHHÓFE (Landkreis Kamień Pomorski) Kamień Pomorski (Cammin) 31 Kozielice (Kóseiitz) 37 Golczewo (Guizow) 38 Jarszewo (Jassow bei Kammin) 39 Świerzno (Schwirsen) 40 Słuchowo (Stuchow) 41 KRAINA U UJŚCIA REGI (powiat gryficki) 42 • THE LAND IN THE REGA MOUTH (County of Gryfice) • EIN LAND AN DER MUNDUNG DES REGA-FLUSSES (Landkreis Gryfice) Gryfice (Greifenberg in Pommern) 42 Trzebiatów (Treptow) 49 Roby (Robe) 53 Płoty (Plathe) 54 Cerkwica (Zirkwitz) 56 Trzęsacz (Hoff) 57 Karnice (Karnitz) 59 Rybokarty (Ribbekardt) 60 HANZA I SALINY (powiat kołobrzeski) 61 • THE HANSA AND THE SALT (County of Kołobrzeg) • HANSE UND SALINEN (Landkreis Kołobrzeg) Kołobrzeg (Kolberg) 62 Sarbia (Zarben) 66 Unieradz (Neurese) 66 WOKÓŁ DAWNEJ STOLICY KSIĘSTWA WOŁOGOSKO - SŁUPSKIEGO (powiat białogardzki) 67 • AROUND THE FORMER CAPITAL OF THE WOLGAST-STOLP DUCHY (County of Białogard) • Um die fruhere Hauptstadt des Wolgast-Stolp Herzogtums herum (Landkreis Białogard) Białogard .(Belgrad) 67 Tychowo (Tychów) 70 236 http://d-nb.info/1035625954 W CIENIU GÓRY CHEŁMSKIEJ,POD