Download Lodge Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anglers' Notice for Fish and Game Region Conservation
ANGLERS’ NOTICE FOR FISH AND GAME REGION CONSERVATION ACT 1987 FRESHWATER FISHERIES REGULATIONS 1983 Pursuant to section 26R(3) of the Conservation Act 1987, the Minister of Conservation approves the following Anglers’ Notice, subject to the First and Second Schedules of this Notice, for the following Fish and Game Region: Eastern NOTICE This Notice shall come into force on the 1st day of October 2017. 1. APPLICATION OF THIS NOTICE 1.1 This Anglers’ Notice sets out the conditions under which a current licence holder may fish for sports fish in the area to which the notice relates, being conditions relating to— a.) the size and limit bag for any species of sports fish: b.) any open or closed season in any specified waters in the area, and the sports fish in respect of which they are open or closed: c.) any requirements, restrictions, or prohibitions on fishing tackle, methods, or the use of any gear, equipment, or device: d.) the hours of fishing: e.) the handling, treatment, or disposal of any sports fish. 1.2 This Anglers’ Notice applies to sports fish which include species of trout, salmon and also perch and tench (and rudd in Auckland /Waikato Region only). 1.3 Perch and tench (and rudd in Auckland /Waikato Region only) are also classed as coarse fish in this Notice. 1.4 Within coarse fishing waters (as defined in this Notice) special provisions enable the use of coarse fishing methods that would otherwise be prohibited. 1.5 Outside of coarse fishing waters a current licence holder may fish for coarse fish wherever sports fishing is permitted, subject to the general provisions in this Notice that apply for that region. -
Heading/Title Aquatic Pest Report 2019
Aquatic Pest Report 2019 Bay of Plenty Regional Council Environmental Publication 2019/03 FebruaryHeading/title 2019 PreparedSubheading by Freya Ewing and Thomas Bailey (Summer Students) 5Month Quay YearStreet P O Box 364 WhakatānePrepared by NEW ZEALAND ISSN: 1175-9372 (Print) ISSN: 1179-9471 (Online) Cover photo: Rowan Wells (NIWA) Acknowledgements We would like to thank Hamish Lass, Biosecurity Officer for his support and guidance, and Lucas MacDonald, Biosecurity Officer for his assistance and advice across all advocacy work. Our acknowledgements also go to Greg Corbett and the remainder of the Biosecurity Team at the Bay of Plenty Regional Council, we are grateful for the encouragement and support we received from all of you. We would also like to show our gratitude to Geoff Ewert for his continued commitment to the Rotorua Lakes, in particular with fixing weed cordons and the running of the boat wash station. We are also immensely grateful to Sarah Van Der Boom from Freshwater Biosecurity Partnership Program for her help with data collection. Lastly, we would like to thank Sam Beaumont and the remainder of the team at Ministry for Primary Industries, for the supplying of merchandise and collateral, signage and guidance. BAY OF PLENTY REGIONAL COUNCIL TOI MOANA 1 Executive summary Many of New Zealand’s most well-known lakes and rivers can be found in the Bay of Plenty region and are therefore known to attract significant visitor numbers annually. The preservation and protection of these waterways are what attracts so many international and domestic tourists to them. Due to the close proximity of the Bay of Plenty lakes and rivers, and their popularity, they are extremely susceptible to invasive pest species. -
1. Kerosene Creek 2. Wairua Stream
1. Kerosene Creek First on our list of hot pools in Rotorua is the world-famous Kerosene Creek. 35 minutes from Rotorua and down a gravel road will take you to the thermal pool and waterfall at Kerosene Creek. The creek is popular not just for its geothermal activity but its beautiful surroundings. Location: 28km south of Rotorua. Take State Highway 5, then travel about 2km down Old Waiotapu Road. 2. Wairua Stream Wairua Stream is a bit harder to get to as you have to get a boat across Lake Tarawera, making it a local’s paradise. It is near Te Rata Bay and is one of the most picturesque hot pools near Rotorua. Location: About 25 minutes out of Rotorua down Spencer Road, Lake Tarawera. By boat, launch at Stoney Point and head straight across Lake Tarawera to the headlands on the right of Mt Tarawera. Go straight through these headlands to where the lake opens. Steer gently to starboard and make for the only beach in this area. 3. Wai-o-Tapu / The Bridge / The Secret Spot When it comes to Rotorua hot pools, it does not get more popular thank this one. Funnily enough, it is supposed to be a secret. Get the remnants from the Wai-O-Tapu geothermal attraction by bathing in the hot pool formed by the hot Wai-O-Tapu stream meeting the cool river. It’s a thermal pool, completely natural and completely free! Location: Just outside the Wai-O-Tapu geothermal park (under the bridge). 30km south of Rotorua just off State Highway 5. -
The Sedimentation and Drainage History of Haroharo Caldera and the Tarawera River System, Taupo Volcanic Zone, New Zealand
The Sedimentation and Drainage History of Haroharo Caldera and The Tarawera River System, Taupo Volcanic Zone, New Zealand Prepared by K A Hodgson and I A Nairn Environment Bay of Plenty Operations Publication 2004/03 August 2004 5 Quay Street P O Box 364 Whakatane NEW ZEALAND ISSN 1176 - 5550 Working with our communities for a better environment Environment Bay of Plenty i Acknowledgements The Department of Conservation (Rotorua Lakes Office) permitted our studies in lake and river reserves. Fletcher Challenge Forests (and its successors) provided detailed contour maps and aerial photographs. Bryan Davy and Hugh Bibby (GNS) provided a pre- publication copy of their paper on seismic imaging in Lake Tarawera. PGSF Contract IANX0201 funded this study. Sedimentation and Drainage History, Tarawera River System Operations Publication 2004/03 Environment Bay of Plenty iii Executive Summary Haroharo caldera has been formed by the coalescence of multiple collapse structures over the last 350 kyr, the latest major collapse accompanying voluminous rhyolite pyroclastic eruptions at ~50 ka. The caldera has formed a sink for precipitation on surrounding catchments, with overflow via the Tarawera River through the Whakatane graben to the sea at ~30 km to NE. Lakes have probably always occupied at least part of the caldera floor, but the early lacustrine history is largely obscured by younger eruptives. Since 26 ka, the Haroharo, Okareka, Rotoma and Tarawera volcanic complexes have grown within the caldera during eleven eruption episodes, confining ten lakes on the caldera margins. Growth of the volcanic complexes has greatly altered drainage paths and ponding areas within and marginal to the caldera, so that the present ~700 km2 caldera catchment area is about half the ~1400 km2 area that drained into the caldera between 26 ka and 9.5 ka. -
Diagenesis and Dissolution at Sinter Island (456 Yrs Bp), Taupo Volcanic Zone: Silica Stars and the Birth of Quartz
DIAGENESIS AND DISSOLUTION AT SINTER ISLAND (456 YRS BP), TAUPO VOLCANIC ZONE: SILICA STARS AND THE BIRTH OF QUARTZ K.A.CAMPBELL1 B.Y. LYNNE1 Scientist, Geology Programme, University of Auckland, NZ. Total No of pages (Excluding Cover Page) = 7 1University of Auckland, Geology Programme, Chemistry Building, 23 Symonds Street, Auckland, N.Z. Ph. +64-9-373-7599 Proceedings 28th NZ Geothermal Workshop 2006 DIAGENESIS AND DISSOLUTION AT SINTER ISLAND (456 YRS BP), TAUPO VOLCANIC ZONE: SILICA STARS AND THE BIRTH OF QUARTZ K.A. CAMPBELL1, B.Y. LYNNE1 1 Geology Programme, University of Auckland, Auckland, New Zealand SUMMARY – Sinter Island on Lake Ohakuri (10 m x 7 m, ~3 m above lake level) in the Orakei Korako geothermal area, Taupo Volcanic Zone, New Zealand, contains a large extinct vent, domal stromatolites and bedded sinter rich in microbial filaments. Despite its young age (456 ± 35 years BP), this ancient hot- spring deposit preserves the complete diagenetic sequence of silica phase mineralogies, confirmed by X- ray diffractometry, from opal-A to opal-CT to opal-C + quartz. Corresponding nano- to micron-scale morphologies include spheres and vitreous silica botryoids, bladed lepispheres, and merged irregular silica rods. Incipient ‘fuzzy’ quartz is represented by rows of criss-crossing rods/blades that are aligned along the c-axis, but showing the typical external habit of microcrystalline quartz. No microbial fabrics are evident in quartzose samples. The deposit also experienced spatially patchy dissolution, resulting in formation of unusual morphological features for some opal-A portions of the sinter. Three intervals of silicification (thin encrusting, thick botryoidal, cemented granular cavity-fill) occurred around filament clusters during alkali-chloride thermal discharge to create a moderately dense opaline deposit. -
CORNERS of NEW ZEALAND by PRIVATE CHARTER 12 Days / 11 Nights Page | 2
CORNERS OF NEW ZEALAND BY PRIVATE CHARTER 12 days / 11 nights Page | 2 Overview ARRIVE DEPART NIGHTS DESTINATION ACCOMMODATION ROOM TYPE Day 1 Day 4 3 Queenstown Matakauri Lodge 2x Suites Day 4 Day 6 2 Wanaka Minaret Station Alpine Lodge 2x Alpine Chalets Day 6 Day 9 3 Taupo Huka Lodge 2x Junior Lodge Suites Day 9 Day 12 3 Bay of Islands The Residences at Kauri Cliffs 1x Four Bedroom Residence Accommodation Matakauri Lodge Matakauri Lodge is an alpine lakeside retreat nestled in serenely beautiful landscapes. It is spectacularly situated on Lake Wakatipu and only seven minutes away from Queenstown. The main lodge offers accommodation in twelve luxurious guest rooms and suites, with eight outlying cottages and four suites within the lodge. Each suite features a private porch, bedroom with sitting area and open fireplace as well as walk in wardrobes and a bathroom, all nestled in native forest overlooking the lake and the mountain panorama. The lodge offers guests spacious lounges, dining and living areas, all with lake views and a range of indoor and outdoor dining options, including superb private dining. Facilities include a full service luxury spa, infinity pool, a fully equipped fitness center and an elegant meeting and business center. The Owner's Cottage features four suites in a freestanding residence, private Jacuzzi, lounge, kitchen and grand courtyard. It is ideal for families, couples or friends traveling together and special celebrations. This property includes Pre-Dinner Drinks. Check In 14:00 Check Out 11:00 Corners of New Zealand by Private Charter | 12 days / 11 nights Page | 3 Minaret Station Alpine Lodge Minaret Station Alpine Lodge welcomes guests to an authentic high country New Zealand experience. -
Tarawera Eruption and After Author(S): James Park Source: the Geographical Journal, Vol
Tarawera Eruption and after Author(s): James Park Source: The Geographical Journal, Vol. 37, No. 1 (Jan., 1911), pp. 42-49 Published by: geographicalj Stable URL: http://www.jstor.org/stable/1777578 Accessed: 21-05-2016 04:05 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Wiley, The Royal Geographical Society (with the Institute of British Geographers) are collaborating with JSTOR to digitize, preserve and extend access to The Geographical Journal This content downloaded from 129.180.1.217 on Sat, 21 May 2016 04:05:18 UTC All use subject to http://about.jstor.org/terms 42 TARAWERA ERUPTION AND AFTER. This upheaval was described, in a report, by Mr. Allard, who was in charge of some drilling operations for petroleum in the neighbourhood at the time, as follows:- " Halfway between Mempakal and Lambedan, on the 21st of September, inl the afternoon, a small island was formed. Some natives were out gathering oysters, and noticed a good many bubbles rising, after which a gradual upheaval took place, and went on all night, forming a hill of about 200 yards by 150 yards, and 50 to 60 feet high. It seems to consist of nothing but slatey-looking clay, with a few sandstones in it, exactly similar to what we have been boring through. -
A Biodiversity Study of High Temperature Mud Pool Microbial Communities: Implications of Regional/Geographical Isolation and Endemism
A BIODIVERSITY STUDY OF HIGH TEMPERATURE MUD POOL MICROBIAL COMMUNITIES: IMPLICATIONS OF REGIONAL/GEOGRAPHICAL ISOLATION AND ENDEMISM by Benjamin R. Wheeler II A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Marine Studies Winter 2006 Copyright 2006 Benjamin R. Wheeler II All Rights Reserved UMI Number: 1432290 Copyright 2006 by Wheeler, Benjamin R., II All rights reserved. UMI Microform 1432290 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 A BIODIVERSITY STUDY OF HIGH TEMPERATURE MUD POOL MICROBIAL COMMUNITIES: IMPLICATIONS OF REGIONAL/GEOGRAPHICAL ISOLATION AND ENDEMISM by Benjamin R. Wheeler II Approved: __________________________________________________________ S. Craig Cary, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Nancy M. Targett, Ph.D. Dean of the Graduate College of Marine Studies Approved: __________________________________________________________ Conrado M. Gempesaw II, Ph.D. Vice Provost for Academic and International Programs ii ACKNOWLEDGMENTS The love and support of my family will always be my inspiration through everything that I do in life. Thank you Mom, Dad, Jim, and Mudder for always believing in me and for your overwhelming encouragement. A special thanks to Dr. Craig Cary for the opportunity to branch out into the realm of molecular biology and conduct my research in some of the most beautiful places on Earth. For those experiences, I will be forever grateful. -
Wood Calderas and Geothermal Systems in The
WOOD CALDERAS AND GEOTHERMAL SYSTEMS IN THE TAUPO VOLCANIC ZONE, NEW ZEALAND C Peter Wood Institute of Geological Nuclear Sciences Ltd, Wairakei Research Centre Taupo, New Zealand Key Words: Calderas, Geothermal Systems, Taupo Volcanic Zone. New Zcaland 2. TAUPO VOLCANIC ZONE The Taupo Volcanic Zone Fig. 1) is the consequence of plate subduction beneath the North Island of New Zcaland. ABSTRACT The thin continental crust (-15 km, Stem and Davey, 1987) spreads at rates up to 18 (Darby and Williams, 1991) Silicic calderas and geothermal systems in Taupo Volcanic in active rifting and subsidence. Since c. 1.6 Ma, the Zone (TVZ) of New Zealand are spatially related. Eight calderas, central TVZ has been the most frequently active and productive active since 1.6 Ma, occupy 45% of the Boundaries of region of rhyolitic volcanism on earth (Houghton et al., 1994). calderas arc often speculative, but of 20 geothermal systems producing an estimated 10 - 15 of rhyolite, and considercd, 15 occur on or next to a caldera margin where there is subordinate dacite, andesite and basalt. Debate continues whether enhanced deep permeability: the best examples are at Haroharo TVZ is a migrating andesitic arc and zone of asymmetric crustal where systems occur at the intersection of volcanic lineations and spreading (eg. Stem, or an andesite-dacite arc with bimodal caldera embayments, and at Rotorua. Drillhole evidence supports rhyolite-basalt back arc (eg. Cole, 1990). Whichever is the case, a realignment of caldera margin through the Wairakei- it is a matter of observation that most geothermal fields are geothermal field. Four geothermal systems have no known contained within the area of rhyolite volcanism. -
Lake Ōkareka 21
Contents Purpose 1 Overview 1 Lake Rotorua 2016-2017 1 Lake Rotoehu 2016-2017 3 Lake Rotoiti 2016-2017 3 Lake Ōkāreka 2016-2017 3 Key achievements 5 Rotorua Te Arawa Lakes Annual Water Quality Results 10 Lake Rotorua 13 Lake Rotoehu 17 Lake Rotoiti 19 Lake Ōkareka 21 Actions and Outcomes for Non Deed Lakes 23 Communications and stakeholder engagement update 26 Science update 27 Land Technical Advisory Group 27 Water Quality Technical Advisory Group 27 Rotorua Te Arawa Lakes Programme – DRAFT Annual Report 2016-2017 i Environmental modelling 28 Action Plans and sewage reticulation 28 Financials 29 Rotorua Te Arawa Lakes Programme – DRAFT Annual Report 2016-2017 ii Purpose The purpose of this document is to report progress against the 2016-2017 Annual Work Programme of the Rotorua Te Arawa Lakes Programme (the Programme), for the year ending 30 June 2017. This report is in accordance with Clause 5.1 and 5.2 of Deed of Funding with the Crown, for the Programme. In this report, progress made on individual interventions is reported against the Annual Work Programme commitments. The overarching goal of the Deed of Funding Agreement is to meet community aspirations for water quality in the four Deed Funded lakes: Rotoiti, Rotorua, Ōkāreka and Rotoehu. Each of these lakes has a target water quality set by the community in the Bay of Plenty Regional Water and Land Plan. This target water quality is set by Trophic Level Index (TLI) and this report provides an update on the status of water quality across the Rotorua Te Arawa Lakes, against the targets set for all lakes, Deed and non-Deed funded. -
The Taupo Eruption Sequence of AD 232±10 in Aotearoa New
地学雑誌 Journal of Geography(Chigaku Zasshi) 130(1)117141 2021 doi:10.5026/jgeography.130.117 The 100s: Significant Exposures of the World( No. 12) The Taupō Eruption Sequence of AD 232 ± 10 in Aotearoa New Zealand: A Retrospection * * David J. LOWE and Adrian PITTARI [Received 9 June, 2020; Accepted 13 August, 2020] Abstract The Taupō eruption, also known as eruption Y, occurred in late summer to early autumn (typically late March to early April) in AD 232 10 yr at Taupō volcano, an ‘inverse’ caldera volcano underlying Lake Taupō in the central Taupō Volcanic Zone, North Island, Aotearoa New Zealand. The complex rhyolitic eruption, the most powerful eruption globally in the last 5000 years, lasted between several days and several weeks and generated five markedly contrasting pyroclastic fall deposits( units Y1 to Y5) followed by the extremely violent emplacement of a low-aspect-ratio ignimbrite( unit Y6). The fall deposits include three phreatomagmatic units, Y1, Y3, and Y4, the latter two being the products of archetypal phreatoplinian events; and two magmatic units, Y2 and Y5, the latter being the product of an exceptionally powerful plinian (previously described as ‘ultraplinian’) event with an extreme magma discharge rate around 108 to 1010 kg s-1. The pyroclastic fall-generating eruptions were followed by the climactic emplace- ment of the entirely non-welded Taupō ignimbrite( Y6). It was generated by the catastrophic collapse of the 35 to 40-km-high plinian eruption column( Y5) that produced a very-fast-moving (600 to 900 km h-1), hot( up to 500°C) pyroclastic flow( density current) that covered about 20,000 km2 of central North Island over a near-circular area ~160 km in diameter, centred on Lake Taupō, in fewer than about ten to 15 minutes. -
Lipid Biomolecules in Silica Sinters: Indicators of Microbial Biodiversity
Blackwell Science, LtdOxford, UKEMIEnvironmental Microbiology1462-2912Society for Applied Microbiology and Blackwell Publishing Ltd, 2004716677Original ArticleLipid biomarkers in silica sintersR. D. Pancost et al . Environmental Microbiology (2005) 7(1), 66–77 doi:10.1111/j.1462-2920.2004.00686.x Lipid biomolecules in silica sinters: indicators of microbial biodiversity Richard D. Pancost,1* Sarah Pressley,1 ceous sinters is of broad scientific interest. From their 16S Joanna M. Coleman,1 Liane G. Benning2 and rRNA, many geothermal organisms appear to be quite B. W. Mountain3 primitive such that insight into their diversity and ecology 1Organic Geochemistry Unit, Bristol Biogeochemistry is a critical component of origin of life studies and, poten- Research Centre, School of Chemistry, University of tially, astrobiology (Stetter, 1996). In addition, siliceous Bristol, Cantock’s Close, Bristol BS8 1TS, UK. sinters are of economic interest as they commonly host 2School of Earth Sciences, University of Leeds, Leeds epithermal gold and silver deposits (Jones et al., 2001a). LS2 9JT, UK. Finely laminated siliceous sinters are built up from 3Institute of Geological and Nuclear Sciences, Wairakei amorphous silica masses that precipitate during cooling Research Centre, Private Bag 2000, Taupo, New Zealand. of hydrothermal fluids that are supersaturated with silica (e.g. Konhauser et al., 2001; Mountain et al., 2003). In the Summary past 20 years, a variety of thermophiles and hyperthermo- philes has been found in such settings, occurring as mats, To explore further the diversity of the microorganisms in hydrothermal fluids and on the surfaces of and and their relationship with geothermal sinters, we entrained in mineral deposits. These microorganisms can examined the lipids preserved in six sinters associ- be highly abundant and could play an important role in ated with four different hot spring (58–82∞C) areas of sinter formation.