Representing COVID-19 Information in Collaborative Knowledge Graphs: the Case Of
Representing COVID-19 information in collaborative knowledge graphs: the case of Wikidata a,b b Houcemeddine Turki (ORCID: 0000-0003-3492-2014), Mohamed Ali Hadj Taieb (ORCID: 0000-0002-2786-8913), Thomas c d e Shafee (ORCID: 0000-0002-2298-7593), Tiago Lubiana (ORCID: 0000-0003-2473-2313), Dariusz Jemielniak (ORCID: 0000-0002- b f 3745-7931), Mohamed Ben Aouicha (ORCID: 0000-0002-2277-5814), Jose Emilio Labra Gayo (ORCID: 0000-0001-8907-5348), g h i Eric A. Youngstrom (ORCID: 0000-0003-2251-6860), Mus’ab Banat (ORCID: 0000-0001-9132-3849), Diptanshu Das (ORCID: j,1* 2 0000-0002-7221-5022), Daniel Mietchen (ORCID: 0000-0001-9488-1870), on behalf of WikiProject COVID-19 a Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia b Data Engineering and Semantics Research Unit, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia c La Trobe University, Melbourne, Victoria, Australia d Computational Systems Biology Laboratory, University of São Paulo, São Paulo, Brazil e Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Poland f Web Semantics Oviedo (WESO) Research Group, University of Oviedo, Spain g Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, CB #3270, Davie Hall, Chapel Hill, NC 27599-3270, United States of America h Faculty of Medicine, Hashemite University, Zarqa, Jordan i Institute of Child Health (ICH), Kolkata, India i Medica Superspecialty Hospital, Kolkata, India j School of Data Science, University of Virginia, Charlottesville, Virginia, United States of America Editor(s): Armin Haller, Australian National University, Australia Solicited reviews: Pouya Ghiasnezhad Omran, Australian National University, Australia; Gengchen Mai, Stanford University, USA; Two anonymous reviewers Abstract.
[Show full text]