Metric Tensor & Chriostofell Symbols

Total Page:16

File Type:pdf, Size:1020Kb

Metric Tensor & Chriostofell Symbols MATHEMATICAL PHYSICS UNIT – 8 Metric Tensor & Chriostofell Symbols PRESENTED BY: DR. RAJESH MATHPAL ACADEMIC CONSULTANT SCHOOL OF SCIENCES U.O.U. TEENPANI, HALDWANI UTTRAKHAND MOB:9758417736,7983713112 STRUCTURE OF UNIT 8.1. INTRODUCTION 8.2. RIEMANNIAN SPACE: METRIC TENSOR jk 풋 8.3. FUNDAMENTAL TENSORS gjk, g AND 휹풌 8.4. CHRISTOFELL’S 3-INDEX SYMBOLS 8.5. GEODESICS 8.1. INTRODUCTION In the mathematical field of differential geometry, one definition of a metric tensor is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface (or higher dimensional differentiable manifold) and produces a real number scalar g(v, w) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold. A metric tensor is called positive-definite if it assigns a positive value g(v, v) > 0 to every nonzero vector v. A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. On a Riemannian manifold, the curve connecting two points that (locally) has the smallest length is called a geodesic, and its length is the distance that a passenger in the manifold needs to traverse to go from one point to the other. Equipped with this notion of length, a Riemannian manifold is a metric space, meaning that it has a distance function d(p, q) whose value at a pair of points p and q is the distance from p to q. Conversely, the metric tensor itself is the derivative of the distance function (taken in a suitable manner). Thus the metric tensor gives the infinitesimal distance on the manifold. While the notion of a metric tensor was known in some sense to mathematicians such as Carl Gauss from the early 19th century, it was not until the early 20th century that its properties as a tensor were understood by, in particular, Gregorio Ricci-Curbastro and Tullio Levi-Civita, who first codified the notion of a tensor. The metric tensor is an example of a tensor field. The components of a metric tensor in a coordinate basis take on the form of a symmetric matrix whose entries transform covariantly under changes to the coordinate system. Thus a metric tensor is a covariant symmetric tensor. From the coordinate-independent point of view, a metric tensor field is defined to be a nondegenerate symmetric bilinear form on each tangent space that varies smoothly from point to point. 8.2. RIEMANNIAN SPACE: METRIC TENSOR An expression which express the distance between two adjacent point is called a metric or line element. In three dimensional space the line element, i.e., the distance between two adjacent points (x, y, z) and (x + dx, y + dy, z + dz) in Cartesian coordinates is given by 2 2 2 2 ds = dx + dy + dz . In terms of general curvilinear coordinates, the line element becomes 33 2 (Using summation convention) ds== gjk du j du k g jk du j du k jk==11 This idea was generalised by Riemann to n-dimensional space. The distance between two neighbouring points with coordinates xj and xj + dxj is given by nn 2 j k j k ds== g jk dx dx g jk dx dx …(8.1) jk==11 (Using summation convention) j where the coefficients gjk are the functions of coordinates x , subject to the restriction g = determinant of gjk, i.e, 푔푗푘 ≠ 0. j k The quadratic differential form gjk dx dx is independent of the coordinates system and is called the Riemannian metric for n dimensional space. The space which is characterised by Riemannian metric is called Riemannian space. Hence the quantities gjk are the components of a covariant symmetric tensor of rank two, called the metric tensor or fundamental tensor. (dx1)2 + (dx2)2 + (dx3)2 + … + (dxn)2 or dxjdxk, the space is called n-dimensional Euclidean space. It is now obvious that Euclidean spaces are the particular cases of Riemannian space. In general theory of relativity (four dimensional space), the line element is given by 2 j k Ds = gjkdx dx (j, k = 1, 2, 3, 4). In special theory of relativity, the line element is given by (dx1)2 + (dx2)2 + (dx3)2 + … + (dxn)2 or dxj dxk. the space is called n-dimensional Euclidean space. It is now obvious that Euclidean spaces are the particular cases of Riemannian space. In general theory of relativity (four dimensional space), the line element is given by 2 i j k ds = gjkdx dx dx (j, k = 1, 2, 3, 4). In special theory of relativity, the line element is given by ds2 = (dx1)2 + (dx2)2 + (dx3)2 [with x4 = ict, i = √ (-1)] = dxjdxj (j = 1, 2, 3, 4). 2 j k As ds = gjk dx dx has been defined in general space (i.e., Riemannian space), it 2 j k is independent of the coordinate system, i.e., dx = gjk dx dx is an invariant. jk 풋 8.3. FUNDAMENTAL TENSORS gjk, g AND 휹 (i) Covariant fundamental tensor gjk. The line element or interval ds in Riemannian풌 space is given by 2 j k ds = gjk dx dx . …(8.2) As dxj dxk are contravariant vectors and ds2 is invariant for arbitrary choice of vectors dxj and dxk, it follows from quotient law that gjk is a covariant tensor, we have 2 j k j ds = gjk dx dx in system of variables x 휇 푣 휇 = 푔휇푣 푑푥 푑푥 in system of variables 푥 휇 푣 j k i.e., = 푔휇푣 푑푥 푑푥 = gjk dx dx . …(8.3) Now applying inverse transformation law to dxj and dxj, i.e., 푗 푗 휕푥 휇 푑푥 = 휇 푑푥 etc. 휕푥 푗 푘 휇 푣 휕푥 휇 휕푥 푣 푔 푑푥 푑푥 = 푔푗푘 푑푥 푑푥 휇푣 휕푥휇 휕푥푣 푗 푘 휕푥 휕푥 휇 푣 = 푔푗푘 푑푥 푑푥 휕푥휇 휕푥푣 휕푥푗 휕푥푘 휇 푣 i.e., 푔 − 푔 휇 푣 푑푥 푑푥 = 0 …(8.4) 휇푣 푗푘 휕푥 휕푥 As 푑푥휇 and 푑푥푣 are arbitrary contravarient vectors, we must have 휕푥푗 휕푥푘 푔 − 푐 = 0 휇푣 휕푥휇 휕푥푣 휕푥푗 휕푥푘 푔 = 푔푗푘 휇푣 휕푥휇 휕푥푣 Hence 푔푗푘 is a covariant tensor of rank 2. 푔푗푘 may be expressed as 1 1 푔 = 푔 + 푔 + 푔 − 푔 푗푘 2 푗푘 푘푗 2 푗푘 푘푗 = 퐴푗푘 + 퐵푗푘 …(8.5) 1 where 퐴 = 푔 + 푔 is symmetric tensor 푗푘 2 푗푘 푘푗 1 ቑ …(8.6) and 퐵 = 푔 − 푔 is symmetric tensor 푗푘 2 푗푘 푘푗 2 j k j k ∴ ds = gjk dx dx = (Ajk + Bjk) dx dx . …(8.7) We have j k k j Bjk dx dx = Bkj dx dx (interchanging dummy indices j and k) j k = – Bjk dx dx (cince Bjk is antisymmetric i.e., Bjk = – Bkj) j k i.e., 2Bjk dx dx = 0. As dxj and dxk are arbitrary vectors, we have Bjk = 0 1 i.e., 푔 + 푔 = 0 2 푗푘 푘푗 i.e., 푔푗푘 + 푔푘푗 i.e., 푔푗푘 is symmetric. So, we can write 푔푗푘 as 1 푔 . = 푔 + 푔 휇푣 2 휇푣 푣휇 Thus we have proved that the metric tensor gjk is covariant symmetric tensor of rank 2. This is called covariant fundamental tensor of rank 2. (ii) Contravariant fundamental tensor gjk. Let us define gjk as 푐표푓푎푐푡표푟 표푓 푔 푖푛 푔 푔푗푘 푗푘 …(8.8) 푔 where g is the determinant of gjk, i.e., 푔11 푔12 푔13 … 푔1푛 푔 푔 푔23 … 푔2푛 …21 …22 … … 푔 = 푔 = … 푗푘 … … … … … … … … … 푔푛1 푔푛2 푔푛3 … 푔푛푛 Since gjk is symmetric, g is symmetric which implies cofactor of gjk in g is symmetric and so gjk is symmetric. Let Aj be an arbitrary contravariant vector, then by quotient law, j Ak = gjk A …(8.9) is an arbitrary covariant vector. Now multiplying eqn. (8.9) by gkl, we get kl kl j g Ak = gjk g A . …(8.10) But g gkl = g 푐표푓푎푐푡표푟 표푓 푔푘푙 푖푛 푔 jk jk 푔 푙 = 훿푗 (by theory of determinants). Therefore equation (8.10) yields kl 푙 j l g Ak = 훿푗 A = A …(8.11) kl i.e., the inner product of g with an arbitrary covariant vector Ak yields a contravariant vector. Hence by quotient law gkl is a contravariant tensor of rank 2. Thus gjk is symmetric contravariant tensor of rank two. This tensor is reciprocal of gjk and is called conjugate metric tensor or contravariant fundamental tensor of rank 2. 풋 풍 (iii) Mixed fundamental tensor 품풌 or 휹풋. we have kl 푙 gjk g = 훿푗 …(8.12) kl As gjk and g are covariant and contravariant tensors of rank 2 recpectively, 푙 therefore, from quotient law 훿푗 is also a tensor of rank 2; it is a mixed tensor, contravariant in l and covarian in j and is known as mixed fundamental tensor. As important property of mixed fundamental tensor is that its components have the same value in all coordinate system, i.e., mixed fundamental tensor is invariant. jk 푗 The three tensors gjk, g and 훿푘 are called the fundamental tensors and are of basic importance in general theory of relativity. 8.4.CHRISTOFELL’S 3-INDEX SYMBOLS We now introduce two expressions (not tensors) formed of the fundamental tensors, known as Christofell’s symbols of first and second kind, namely : Christofell’s symbol of first kind. 1 휕푔 휕푔 휕푔 푗푘, 푙 = Γ = 푙푗 + 푘푙 − 푗푘 …(8.13) l,jk 2 휕푥푘 휕푥푗 휕푥푙 Christofell’s symbol of second kind.
Recommended publications
  • Topology and Physics 2019 - Lecture 2
    Topology and Physics 2019 - lecture 2 Marcel Vonk February 12, 2019 2.1 Maxwell theory in differential form notation Maxwell's theory of electrodynamics is a great example of the usefulness of differential forms. A nice reference on this topic, though somewhat outdated when it comes to notation, is [1]. For notational simplicity, we will work in units where the speed of light, the vacuum permittivity and the vacuum permeability are all equal to 1: c = 0 = µ0 = 1. 2.1.1 The dual field strength In three dimensional space, Maxwell's electrodynamics describes the physics of the electric and magnetic fields E~ and B~ . These are three-dimensional vector fields, but the beauty of the theory becomes much more obvious if we (a) use a four-dimensional relativistic formulation, and (b) write it in terms of differential forms. For example, let us look at Maxwells two source-free, homogeneous equations: r · B = 0;@tB + r × E = 0: (2.1) That these equations have a relativistic flavor becomes clear if we write them out in com- ponents and organize the terms somewhat suggestively: x y z 0 + @xB + @yB + @zB = 0 x z y −@tB + 0 − @yE + @zE = 0 (2.2) y z x −@tB + @xE + 0 − @zE = 0 z y x −@tB − @xE + @yE + 0 = 0 Note that we also multiplied the last three equations by −1 to clarify the structure. All in all, we see that we have four equations (one for each space-time coordinate) which each contain terms in which the four coordinate derivatives act. Therefore, we may be tempted to write our set of equations in more \relativistic" notation as ^µν @µF = 0 (2.3) 1 with F^µν the coordinates of an antisymmetric two-tensor (i.
    [Show full text]
  • Tensor Manipulation in GPL Maxima
    Tensor Manipulation in GPL Maxima Viktor Toth http://www.vttoth.com/ February 1, 2008 Abstract GPL Maxima is an open-source computer algebra system based on DOE-MACSYMA. GPL Maxima included two tensor manipulation packages from DOE-MACSYMA, but these were in various states of disrepair. One of the two packages, CTENSOR, implemented component-based tensor manipulation; the other, ITENSOR, treated tensor symbols as opaque, manipulating them based on their index properties. The present paper describes the state in which these packages were found, the steps that were needed to make the packages fully functional again, and the new functionality that was implemented to make them more versatile. A third package, ATENSOR, was also implemented; fully compatible with the identically named package in the commercial version of MACSYMA, ATENSOR implements abstract tensor algebras. 1 Introduction GPL Maxima (GPL stands for the GNU Public License, the most widely used open source license construct) is the descendant of one of the world’s first comprehensive computer algebra systems (CAS), DOE-MACSYMA, developed by the United States Department of Energy in the 1960s and the 1970s. It is currently maintained by 18 volunteer developers, and can be obtained in source or object code form from http://maxima.sourceforge.net/. Like other computer algebra systems, Maxima has tensor manipulation capability. This capability was developed in the late 1970s. Documentation is scarce regarding these packages’ origins, but a select collection of e-mail messages by various authors survives, dating back to 1979-1982, when these packages were actively maintained at M.I.T. When this author first came across GPL Maxima, the tensor packages were effectively non-functional.
    [Show full text]
  • Line Element in Noncommutative Geometry
    Line element in noncommutative geometry P. Martinetti G¨ottingenUniversit¨at Wroclaw, July 2009 . ? ? - & ? !? The line element p µ ν ds = gµν dx dx is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - . ? !? The line element p µ ν ds = gµν dx dx & ? is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - !? The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance Z y d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). ? - The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance Z y !? d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry). The line element p µ ν ds = gµν dx dx . & ? ? is mainly useful to measure distance ? -Z y !? d(x; y) = inf ds: x If, for some quantum gravity reasons, [x µ; x ν ] 6= 0 is one losing the notion of distance ? (annoying then to speak of noncommutative geo-metry).
    [Show full text]
  • SPINORS and SPACE–TIME ANISOTROPY
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE{TIME ANISOTROPY University of Athens ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii - i ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. ii - iii ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • General Relativity Fall 2019 Lecture 11: the Riemann Tensor
    General Relativity Fall 2019 Lecture 11: The Riemann tensor Yacine Ali-Ha¨ımoud October 8th 2019 The Riemann tensor quantifies the curvature of spacetime, as we will see in this lecture and the next. RIEMANN TENSOR: BASIC PROPERTIES α γ Definition { Given any vector field V , r[αrβ]V is a tensor field. Let us compute its components in some coordinate system: σ σ λ σ σ λ r[µrν]V = @[µ(rν]V ) − Γ[µν]rλV + Γλ[µrν]V σ σ λ σ λ λ ρ = @[µ(@ν]V + Γν]λV ) + Γλ[µ @ν]V + Γν]ρV 1 = @ Γσ + Γσ Γρ V λ ≡ Rσ V λ; (1) [µ ν]λ ρ[µ ν]λ 2 λµν where all partial derivatives of V µ cancel out after antisymmetrization. σ Since the left-hand side is a tensor field and V is a vector field, we conclude that R λµν is a tensor field as well { this is the tensor division theorem, which I encourage you to think about on your own. You can also check that explicitly from the transformation law of Christoffel symbols. This is the Riemann tensor, which measures the non-commutation of second derivatives of vector fields { remember that second derivatives of scalar fields do commute, by assumption. It is completely determined by the metric, and is linear in its second derivatives. Expression in LICS { In a LICS the Christoffel symbols vanish but not their derivatives. Let us compute the latter: 1 1 @ Γσ = @ gσδ (@ g + @ g − @ g ) = ησδ (@ @ g + @ @ g − @ @ g ) ; (2) µ νλ 2 µ ν λδ λ νδ δ νλ 2 µ ν λδ µ λ νδ µ δ νλ since the first derivatives of the metric components (thus of its inverse as well) vanish in a LICS.
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • The Language of Differential Forms
    Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects.
    [Show full text]
  • Low-Level Image Processing with the Structure Multivector
    Low-Level Image Processing with the Structure Multivector Michael Felsberg Bericht Nr. 0202 Institut f¨ur Informatik und Praktische Mathematik der Christian-Albrechts-Universitat¨ zu Kiel Olshausenstr. 40 D – 24098 Kiel e-mail: [email protected] 12. Marz¨ 2002 Dieser Bericht enthalt¨ die Dissertation des Verfassers 1. Gutachter Prof. G. Sommer (Kiel) 2. Gutachter Prof. U. Heute (Kiel) 3. Gutachter Prof. J. J. Koenderink (Utrecht) Datum der mundlichen¨ Prufung:¨ 12.2.2002 To Regina ABSTRACT The present thesis deals with two-dimensional signal processing for computer vi- sion. The main topic is the development of a sophisticated generalization of the one-dimensional analytic signal to two dimensions. Motivated by the fundamental property of the latter, the invariance – equivariance constraint, and by its relation to complex analysis and potential theory, a two-dimensional approach is derived. This method is called the monogenic signal and it is based on the Riesz transform instead of the Hilbert transform. By means of this linear approach it is possible to estimate the local orientation and the local phase of signals which are projections of one-dimensional functions to two dimensions. For general two-dimensional signals, however, the monogenic signal has to be further extended, yielding the structure multivector. The latter approach combines the ideas of the structure tensor and the quaternionic analytic signal. A rich feature set can be extracted from the structure multivector, which contains measures for local amplitudes, the local anisotropy, the local orientation, and two local phases. Both, the monogenic signal and the struc- ture multivector are combined with an appropriate scale-space approach, resulting in generalized quadrature filters.
    [Show full text]
  • Arxiv:1510.06157V2 [Math.DG] 24 Aug 2017 2
    DETERMINATION OF A RIEMANNIAN MANIFOLD FROM THE DISTANCE DIFFERENCE FUNCTIONS MATTI LASSAS AND TEEMU SAKSALA Abstract. Let (N; g) be a Riemannian manifold with the dis- tance function d(x; y) and an open subset M ⊂ N. For x 2 M we denote by Dx the distance difference function Dx : F × F ! R, given by Dx(z1; z2) = d(x; z1) − d(x; z2), z1; z2 2 F = N n M. We consider the inverse problem of determining the topological and the differentiable structure of the manifold M and the metric gjM on it when we are given the distance difference data, that is, the set F , the metric gjF , and the collection D(M) = fDx; x 2 Mg. Moreover, we consider the embedded image D(M) of the manifold M, in the vector space C(F × F ), as a representation of manifold M. The inverse problem of determining (M; g) from D(M) arises e.g. in the study of the wave equation on R×N when we observe in F the waves produced by spontaneous point sources at unknown points (t; x) 2 R × M. Then Dx(z1; z2) is the difference of the times when one observes at points z1 and z2 the wave produced by a point source at x that goes off at an unknown time. The prob- lem has applications in hybrid inverse problems and in geophysical imaging. Keywords: Inverse problems, distance functions, embeddings of man- ifolds, wave equation. Contents 1. Introduction 2 1.1. Motivation of the problem 2 1.2. Definitions and the main result 2 1.3.
    [Show full text]
  • ASSIGNMENTS Week 4 (F. Saueressig) Cosmology 13/14 (NWI-NM026C) Prof
    ASSIGNMENTS Week 4 (F. Saueressig) Cosmology 13/14 (NWI-NM026C) Prof. A. Achterberg, Dr. S. Larsen and Dr. F. Saueressig Exercise 1: Flat space in spherical coordinates For constant time t the line element of special relativity reduces to the flat three-dimensional Euclidean metric Euclidean 2 SR 2 2 2 2 (ds ) = (ds ) =const = dx + dy + dz . (1) − |t Use the coordinate transformation x = r sin θ cos φ, y = r sin θ sin φ , z = r cos θ , (2) with θ [0,π] and φ [0, √2 π[ to express the line element in spherical coordinates. ∈ ∈ Exercise 2: Distances, areas and volumes For constant time the metric describing the spatial part of a homogeneous closed Friedmann- Robertson Walker (FRW) universe is given by 2 2 dr 2 2 2 2 ds = + r dθ + sin θ dφ , r [ 0 , a ] . (3) 1 (r/a)2 ∈ − The scale factor a(t) depends on time only so that, for t = const, it can be considered as a fixed number. Compute from this line element a) The proper circumference of the sphere around the equator. b) The proper distance from the center of the sphere up to the coordinate radius a. c) The proper area of the two-surface at r = a. d) The proper volume inside r = a. Compare your results to the ones expected from flat Euclidean space. Which of the quantities are modified by the property that the line element (3) is curved? Exercise 3: The metric is covariantly constant In the lecture we derived a formula for the Christoffel symbol Γα 1 gαβ g + g g .
    [Show full text]
  • Weyl's Spin Connection
    THE SPIN CONNECTION IN WEYL SPACE c William O. Straub, PhD Pasadena, California “The use of general connections means asking for trouble.” —Abraham Pais In addition to his seminal 1929 exposition on quantum mechanical gauge invariance1, Hermann Weyl demonstrated how the concept of a spinor (essentially a flat-space two-component quantity with non-tensor- like transformation properties) could be carried over to the curved space of general relativity. Prior to Weyl’s paper, spinors were recognized primarily as mathematical objects that transformed in the space of SU (2), but in 1928 Dirac showed that spinors were fundamental to the quantum mechanical description of spin—1/2 particles (electrons). However, the spacetime stage that Dirac’s spinors operated in was still Lorentzian. Because spinors are neither scalars nor vectors, at that time it was unclear how spinors behaved in curved spaces. Weyl’s paper provided a means for this description using tetrads (vierbeins) as the necessary link between Lorentzian space and curved Riemannian space. Weyl’selucidation of spinor behavior in curved space and his development of the so-called spin connection a ab ! band the associated spin vector ! = !ab was noteworthy, but his primary purpose was to demonstrate the profound connection between quantum mechanical gauge invariance and the electromagnetic field. Weyl’s 1929 paper served to complete his earlier (1918) theory2 in which Weyl attempted to derive electrodynamics from the geometrical structure of a generalized Riemannian manifold via a scale-invariant transformation of the metric tensor. This attempt failed, but the manifold he discovered (known as Weyl space), is still a subject of interest in theoretical physics.
    [Show full text]
  • Appendix a Tensor Mathematics
    Appendix A Tensor Mathematics A.l Introduction In physics we are accustomed to relating quantities to other quantities by means of mathematical expressions. The quantities that represent physical properties of a point or of an infinitesimal volume in space may be of a single numerical value without direction, such as temperature, mass, speed, dist­ ance, specific gravity, energy, etc.; they are defined by a single magnitude and we call them scalars. Other physical quantities have direction as well and their magnitude is represented by an array of numerical values, their number corresponding to the number of dimensions of the space, three numerical values in a three-dimensional space; such quantities are called vectors, for example velocity, acceleration, force, etc., and the three numerical values are the components of the vector in the direction of the coordinates of the space. Still other physical quantities such as moment of inertia, stress, strain, permeability coefficients, electric flux, electromagnetic flux, etc., are repre­ sented in a three-dimensional space by nine numerical quantities, called components, and are known as tensors. We will introduce a slightly different definition. We shall call the scalars tensors of order zero, vectors - tensors of order one and tensors with nine components - tensors of order two. There are, of course, in physics and mathematics, tensors of higher order. Tensors of order three have an array of 27 components and tensors of order four have 81 components and so on. Couple stresses that arise in materials with polar forces are examples of tensors of order three, and the Riemann curvature tensor that appears in geodesics is an example of a tensor of order four.
    [Show full text]