Weak Disruptive Selection and Incomplete Phenotypic Divergence in Two Classic Examples of Sympatric Speciation: Cameroon Crater Lake Cichlids

Total Page:16

File Type:pdf, Size:1020Kb

Weak Disruptive Selection and Incomplete Phenotypic Divergence in Two Classic Examples of Sympatric Speciation: Cameroon Crater Lake Cichlids The University of Chicago Weak Disruptive Selection and Incomplete Phenotypic Divergence in Two Classic Examples of Sympatric Speciation: Cameroon Crater Lake Cichlids. Author(s): Christopher H. Martin Reviewed work(s): Source: The American Naturalist, Vol. 180, No. 4 (October 2012), pp. E90-E109 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/10.1086/667586 . Accessed: 14/09/2012 14:38 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org vol. 180, no. 4 the american naturalist october 2012 E-Article Weak Disruptive Selection and Incomplete Phenotypic Divergence in Two Classic Examples of Sympatric Speciation: Cameroon Crater Lake Cichlids Christopher H. Martin* Department of Evolution & Ecology and Center for Population Biology, University of California, Davis, California 95616 Submitted February 2, 2012; Accepted May 21, 2012; Electronically published August 24, 2012 Online enhancement: appendix (PDF file). Dryad data: http://dx.doi.org/10.5061/dryad.rn30d. in Via 2000; Turelli et al. 2001; Coyne and Orr 2004; abstract: Recent documentation of a few compelling examples of Gavrilets 2004; Bolnick and Fitzpatrick 2007). This end- sympatric speciation led to a proliferation of theoretical models. Unfortunately, plausible examples from nature have rarely been used point on the speciation-with-gene-flow continuum is tra- to test model predictions, such as the initial presence of strong dis- ditionally defined geographically as individuals in a pop- ruptive selection. Here I estimated the form and strength of selection ulation within dispersal range of each other (Mallet et al. in two classic examples of sympatric speciation: radiations of Cam- 2009) or, from a population genetic viewpoint, as the evo- eroon cichlids restricted to Lakes Barombi Mbo and Ejagham. I lution of reproductive isolation within an initially pan- measured five functional traits and relative growth rates in over 500 individuals within incipient species complexes from each lake. Dis- mictic population (Fitzpatrick et al. 2008). Despite its ap- ruptive selection was prevalent in both groups on single and mul- parent rarity in nature, dependent on both the spatial scale tivariate trait axes but weak relative to stabilizing selection on other of gene flow (Kisel and Barraclough 2010) and the rarity traits and most published estimates of disruptive selection. Further- of geographic scenarios in which it can be strongly inferred more, despite genetic structure, assortative mating, and bimodal spe- (Coyne and Orr 2004), sympatric speciation holds a pe- cies-diagnostic coloration, trait distributions were unimodal in both rennial fascination due to its formidable integration of species complexes, indicating the earliest stages of speciation. Long waiting times or incomplete sympatric speciation may result when natural and sexual selection, ecology, and population ge- disruptive selection is initially weak. Alternatively, I present evidence netics (Bolnick and Fitzpatrick 2007; Fitzpatrick et al. of additional constraints in both species complexes, including weak 2008). Moreover, it illustrates the power of natural selec- linkage between coloration and morphology, reduced morphological tion to generate biodiversity without geographic interven- variance aligned with nonlinear selection surfaces, and minimal eco- tion (Darwin 1859). logical divergence. While other species within these radiations show Models of sympatric speciation by natural selection gen- complete phenotypic separation, morphological and ecological di- vergence in these species complexes may be slow or incomplete out- erally require three initial conditions for the splitting of side optimal parameter ranges, in contrast to rapid divergence of ecological subgroups within a population: (1) strong dis- their sexual coloration. ruptive selection on ecological traits, (2) strong assortative mating by ecotype, and (3) the buildup of linkage dis- Keywords: adaptation, adaptive radiation, disruptive selection, selec- equilibrium between mating and ecological loci (Kirkpat- tion gradient, diversification, ecological opportunity, fitness land- scape, sexual selection, adaptive dynamics, trophic competition. rick and Ravigne 2002; Bolnick and Fitzpatrick 2007). The central requirement is that disruptive selection on ecotypes within a freely interbreeding population is strong enough Introduction to drive the evolution of nonrandom mating with respect to ecotype, thus increasing linkage between ecotype and After 150 years of contention, the theoretical possibility mate choice loci and ultimately reproductive isolation be- and existence in nature of at least a few plausible examples tween ecotypes (pleiotropic traits affecting ecotype and of sympatric speciation is now widely accepted (reviewed assortative mating can also circumvent the obstacle of link- * E-mail: [email protected]. age; Servedio et al. 2011). Disruptive selection arises either from frequency-dependent competition for shared re- Am. Nat. 2012. Vol. 180, pp. E90–E109. ᭧ 2012 by The University of Chicago. 0003-0147/2012/18004-53625$15.00. All rights reserved. sources (Roughgarden 1972; Bolnick 2004a; Pfennig and DOI: 10.1086/667586 Pfennig 2010), performance trade-offs resulting from ad- Nonlinear Selection in Cameroon Cichlids E91 aptation to different resources (Wilson and Turelli 1986; of components and parameter ranges in these systems (Gav- Martin and Pfennig 2009), or the uneven distribution of rilets et al. 2007), relative to estimates in systems where resources in the environment (Schluter and Grant 1984; sympatric speciation has not occurred (Bolnick 2011), can Hendry et al. 2009). Genetic homogenization due to ran- help cull the many existing theoretical models and provide dom mating is dependent on the effective recombination realistic parameter values for future efforts. Ultimately, this rate (Via 2009); the rate of decay of linkage disequilibrium approach should lead to an understanding of the necessary (Flint-Garcia et al. 2003); the number of genetic loci un- and sufficient components and parameter space for sym- derlying ecotypes, mate choice, and ecotype marker traits patric speciation in nature. (Bolnick and Fitzpatrick 2007); and the strength of as- One complication of this retrospective approach is that sortative mating (Dieckmann and Doebeli 1999; Otto et speciation models estimate the initial conditions for spe- al. 2008; van Doorn et al. 2009). ciation to proceed, whereas in most empirical systems, Beyond these three necessary conditions, the impor- speciation is already under way or has completed. For tance of additional factors is unknown. For example, if example, models predict that strong disruptive selection ecotype divergence automatically results in assortative is necessary to initiate sympatric speciation, but the fitness mating (Berlocher and Feder 2002) or generates some re- surface begins to flatten as phenotypic variance increases, productive isolation as a by-product (automatic and classic resulting in weak or absent disruptive selection after phe- magic traits sensu Servedio et al. 2011), then sympatric notypic separation of ecological subgroups (Dieckmann speciation is relatively easy (Dieckmann and Doebeli and Doebeli 1999; Bolnick and Doebeli 2003; also see dis- 1999). Indeed, sympatric speciation facilitated by magic cussion of the ghost of competition past: Connell 1980). traits may be common (Berlocher and Feder 2002; Soren- Thus, interpreting these estimates of selection additionally son et al. 2003; Papadopulos et al. 2011). In contrast, requires an understanding of the progress of speciation sympatric speciation should be more difficult when eco- within each system; ideally, species in the earliest stages of type, species-specific markers, and mate choice loci are all divergence should provide the best estimates of the initial initially unlinked (Dieckmann and Doebeli 1999), but the conditions of sympatric speciation. occurrence of this form of sympatric speciation in nature Here I estimated the form and strength of natural se- is unknown because it requires ruling out the presence of lection in the flagship example of sympatric speciation, any magic traits, which may be very common (Servedio the Cameroon crater lake cichlid radiations: Coyne and et al. 2011). Orr (2004, p. 152) state, “We know of no more convincing Additional components may also be necessary for sym- example [of sympatric speciation] in any group.” Indeed, patric speciation, such as sexual selection (van Doorn et the three independent sympatric radiations of Cameroon al. 2009; Maan and Seehausen 2011), competition versus cichlids admirably fulfill Coyne and Orr’s (2004) stringent habitat preference (Bolnick and Fitzpatrick 2007), genomic criteria for sympatric speciation: each is a monophyletic islands of speciation
Recommended publications
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • Mitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes
    What, if Anything, is a Tilapia?ÐMitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes Vera Klett and Axel Meyer Department of Biology, University of Konstanz, Germany We estimated a novel phylogeny of tilapiine cichlid ®sh (an assemblage endemic to Africa and the Near East) within the African cichlid ®shes on the basis of complete mitochondrial NADH dehydrogenase subunit 2 (ND2) gene sequences. The ND2 (1,047 bp) gene was sequenced in 39 tilapiine cichlids (38 species and 1 subspecies) and in an additional 14 nontilapiine cichlid species in order to evaluate the traditional morphologically based hypothesis of the respective monophyly of the tilapiine and haplochromine cichlid ®sh assemblages. The analyses included many additional cichlid lineages, not only the so-called tilapiines, but also lineages from Lake Tanganyika, east Africa, the Neotropics and an out-group from Madagascar with a wide range of parental care and mating systems. Our results suggest, in contrast to the historical morphology-based hypotheses from Regan (1920, 1922), Trewavas (1983), and Stiassny (1991), that the tilapiines do not form a monophyletic group because there is strong evidence that the genus Tilapia is not monophyletic but divided into at least ®ve distinct groups. In contrast to this ®nding, an allozyme analysis of Pouyaud and AgneÁse (1995), largely based on the same samples as used here, found a clustering of the Tilapia species into only two groups. This discrepancy is likely caused by the difference in resolution power of the two marker systems used. Our data suggest that only type species Tilapia sparrmanii Smith (1840) should retain the genus name Tilapia.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
    Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • Project Update: January 2018 Activities After the Authorisation Has
    Project Update: January 2018 Activities After the authorisation has been approved by the mayor and village’s leader in September 2017, data collections were carried out in October and November 2017 during the rainy season and in December 2017 and January 2018 during the dry season. During the first field trip in October 2017, the study area was subdivided into 13 different parts. Six of these parts represented the shores surrounding the lake and were typically characterised by trees creating shade in these area and the other six are in the middle of each shore. The 13th transect is representing the catchment. These different transects were named from Zone 1 to Zone 13 and their GPS coordinates, physico-chemical parameters (turbidity, total of dissolved solids, conductivity, salinity, temperature, pH), habitats (specifically shoreline vegetation) were recorded. On the first fishing day, fish were caught using an echo sounder and small mesh gillnets as for research purpose; weighed, measured, marked and then immediately released in the transect. On the second fishing day of the same month the same action has been repeated and data were recorded in a printed excel data base. The following results have been founded: - GPS coordinate for each transect was: zone 1 (N:4˚.66.160'; E: 09˚41.234'); zone 2 (); zone 3 (N:4˚34.101'; E:09˚24.019'); zone 4 (N:04˚39.260'; E: 09˚24.627'); zone 5 (N:4˚39.709'; E: 9˚24.737') ; zone 6 (N:04˚40.171'; E:9˚23.686'); zone 7 (N:4˚65.298'; E:09˚40.288'); zone 8 (N:4˚65.275'; E:09˚40.701'); zone 9 (4˚65.282'; E:09˚40.845'); zone 10 (N:4˚66.836'; E:09˚39.750'); zone 11 (N:4˚66.238'; E:09˚41.845039'); zone 12 (N:4˚65.517'; E:09˚41.016'); zone 13 (N:4˚40.168'; E:09˚23.684').
    [Show full text]
  • BAP Rules and Regulations Shall Be Reviewed and That BAP Points Are Recorded by Giving All the Revised When Necessary
    Tropical Fish Society of Rhode Island Breeders Awards Program Revised November 7, 2011 Purpose: the auction or complete and submit a spawning The Breeders Award Program, hereafter referred to outline to the BAP chair within 30 days. If as BAP, recognizes outstanding achievements in the neither is submitted within the time period, the breeding of aquarium fish. It also encourages the aquarist will not be awarded the 20 points. An distributing of aquarium fish, sharing of breeding additional 5 points is awarded upon submission techniques, and participation by club members. of the article or spawning outline. If the article or spawning outline is submitted after the 30 day The BAP Committee: The President shall appoint period, the aquarist must then resubmit the fry The BAP Chair, and the BAP Chair shall appoint for auction. Articles for second, third, or fourth members to the BAP committee if and when needed. generation Class D spawns are not required. Function of the BAP Chair & Committee: To Additional Criteria: oversee and enforce all rules and regulations 1.) The aquarist must be a member in good standing governing the BAP, awarding points to qualifying of TFSRI in order to participate in the BAP. members, maintaining records and presenting awards. 2.) It is the responsibility of the aquarist to see The BAP rules and regulations shall be reviewed and that BAP points are recorded by giving all the revised when necessary. necessary information to the chairman of the BAP at the time the fish is presented for the auction. Points: BAP paperwork must accompany the fry to be All fish are divided into four classes; Class A is worth auctioned to have points awarded.
    [Show full text]
  • TRACE METALS in WATER and FISH (Unga Species, Pungu Maclareni, Catfish Clarias Maclareni) from LAKE BAROMBI MBO, CAMEROON. SONE
    TRACE METALS IN WATER AND FISH (Unga species, Pungu maclareni, Catfish Clarias maclareni) FROM LAKE BAROMBI MBO, CAMEROON. A THESIS Presented In Partial Fulfilment of the Requirements for the Degree Master of Science By Sone Brice Nkwelle Ås, Norway July, 2012. ACKNOWLEDGEMENTS This thesis represents an output of a two years master study in the Department of Ecology and Natural Resource Management (INA) at the Norwegian University of Life Sciences (UMB). My most profound gratitude goes to my supervisors, Hans-Christian Teien and Bjørn Olav Rosseland, who supported me throughout my thesis by being patient, giving me all the resources needed, letting me learn all that there was to learn, allowing me to explore my own ideas, scrutinizing my write-up and always pushing me forward with a pat on the back. My uttermost thanks to the staff of the Environmental Chemistry Section of the Department of Plant and Environmental Sciences (IPM), who allowed me use the laboratory for handling and preparation of field samples. A grand "Tusen takk" to Tove Loftass for assisting me during those laboratory sessions. For stable isotope and mercury analyses much thanks to, Solfrid Lohne and Karl Andreas Jensen, respectively. I also wish to thank Masresha Alemayehu for supporting and encouraging me with advice and valuable literature. I deeply appreciate the following persons: Dr. Vincent Tania and Dr. Etame Lucien Sone of the Ministry of Scientific Research and Innovation, Cameroon, for facilitating the ministerial authorization of my field work at Lake Barombi Mbo, Cameroon. Dr. Richard Akoachere, Hydro geologist at the University of Buea, Cameroon for giving me all the field advice and supplementary sampling instruments.
    [Show full text]
  • Speciation in Sympatry with Ongoing Secondary Gene Flow and an Olfactory Trigger 2 in a Radiation of Cameroon Cichlids 3
    bioRxiv preprint doi: https://doi.org/10.1101/229864; this version posted December 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Speciation in sympatry with ongoing secondary gene flow and an olfactory trigger 2 in a radiation of Cameroon cichlids 3 4 Jelmer W. Poelstra1,2, Emilie J. Richards1, & Christopher H. Martin1* 5 6 1 Department of Biology, University of North Carolina at Chapel Hill, 7 Chapel Hill, NC 27599-3280 8 2 Department of Biology, Duke University, Durham NC 27708 9 Keywords: sympatric speciation, genomics, whole-genome sequencing, population genetics, 10 demographics, coalescent, cichlids 11 Running title: sympatric speciation with gene flow 12 *Corresponding author: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 bioRxiv preprint doi: https://doi.org/10.1101/229864; this version posted December 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 34 Abstract 35 Whether speciation can happen in the absence of geographical barriers and if so, under which 36 conditions, is a fundamental question in our understanding of the evolution of new species. Among 37 candidates for sympatric speciation, Cameroon crater lake cichlid radiations have been considered 38 the most compelling.
    [Show full text]
  • Download From
    Information Sheet on Ramsar Wetlands (RIS) – 2006-2008 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 7, 2nd edition, as amended by COP9 Resolution IX.1 Annex B). A 3rd edition of the Handbook, incorporating these amendments, is in preparation and will be available in 2006. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY 1. Dr. Ulrich SCHLIEWEN, Department of Ichthyology, Zoologische Staatssammlung München, Münchhausenstrasse 21, D - 81247 Designation date Site Reference Number München, Germany. Email: schliewen@mpi- seewiesen.mpg.de, phone: ++49-8107-111, fax: ++49-8107-300. 2. Tabe Ebanga-Orock TANJONG, WWF-Cameroon Programme Office, BP 6776, Yaounde Cameroon.
    [Show full text]
  • Fish Types Inventoried After 25 April 1944 (Pisces) 231-286 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; Download
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2011 Band/Volume: 034 Autor(en)/Author(s): Neumann Dirk Artikel/Article: Type Catalogue of the Ichthyological Collection of the Zoologische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces) 231-286 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 34 2 231-286 München, Dezember 2011 ISSN 0341-8391 Type Catalogue of the Ichthyological Collection of the Zoologische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces) Dirk Neumann Neumann, D. 2011. Type Catalogue of the Ichthyological Collection of the Zoo- logische Staatssammlung München. Part II: Fish types inventoried after 25 April 1944 (Pisces). Spixiana 34 (2): 233-288. Part I of the ichthyological type catalogue of the ZSM (Neumann 2006) reviewed the historic “Old Collection”, of which types were apparently lost in the Second World War. Part II refers to type material physically available in ZSM, including historic types saved and re-inventoried. Rebuilding the ichthyological collection after the war, Otto Schindler received with the so-called “Kähsbauer Donations” historic fish specimens from the Naturhistorisches Museum Wien (NMW). Among them are types from the Natterer and Thayer expeditions to Brazil, from the Hase- man expeditions to South America and from Steindachner’s late Brazil expedition in 1903. As far as possible, exchanged specimens were critically reviewed, traced to original lots and compared with NMW acquisition entries for unambiguous identification. Additional historic type material was recovered from the “Zoologi- sche Präparatesammlung der Ludwig-Maximilians-Universität München” (ZPLMU), i.
    [Show full text]
  • Scale Ecological Partitioning in a Recent Cichlid fish Adaptive Radiation
    ORIGINAL ARTICLE doi:10.1111/evo.13072 Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation Antonia G. P. Ford,1,2,3 Lukas Ruber,¨ 4,5 Jason Newton,6 Kanchon K. Dasmahapatra,7 John D. Balarin,8 Kristoffer Bruun,1 and Julia J. Day1 1Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom 2Current Address: School of Biological Sciences, Bangor University, ECW Building, Deiniol Road, Bangor, Gwynedd LL57 2UW, Wales, United Kingdom 3E-mail: [email protected] 4Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland 5Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland 6NERC Life Sciences Mass Spectrometry Facility, SUERC, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, United Kingdom 7Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom 8Pact Inc, Lilongwe, Malawi Received January 27, 2016 Accepted September 10, 2016 Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation.
    [Show full text]