The Impact of Super Typhoon Nuri (2014) on the Structure and Strength of the Stratospheric Polar Vortex

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Super Typhoon Nuri (2014) on the Structure and Strength of the Stratospheric Polar Vortex The impact of Super Typhoon Nuri (2014) on the structure and strength of the stratospheric polar vortex ISS HD Earth Viewing Experiment Nov 2, 2014 Super Typhoon Nuri Hannah E. ACard and Andrea L. Lang University at Albany, SUNY Cyclone WorKshop Pacific Grove, CA 28 October 2015 R EPORTS 1998 - 1999 Northern Annular Mode A Weak Vortex Regimes 1 50 hPa 40 km 10 30 0 20 0 100 10 4 1000 0 2 BacKground Oct Nov Dec Jan Feb Mar Apr -10 Fig. 1. Time-height development of the northern annular mode during the winter of 1998–1999. The indices have daily resolution and are nondimensional. Blue corresponds to positive values (strong polar vortex), and red corresponds to negative values (weak polar vortex). The contour -1 interval is 0.5, with values between Ϫ0.5 and 0.5 unshaded. The thin horizontal line indicates the approximate boundary between the troposphere and the stratosphere. B Strong Vortex Regimes A Composite of 18 Composite of 18weak Weak vortex events Vortex Events 10 30 30 km hPa 20 0 100 0 tropopause 300 10 1000 0 -90 -60 -30 0 30 60 90 -1 Lag (Days) −AO at 0 2 0 B Composite of 30 Composite of 30 Strongstrong Vortexvortex events Events the surface 10 30 30 km hPa 20 100 Fig. 3. Average sea-level pressure anomalies tropopause (hPa) for (A) the 1080 days during weak vortex 300 10 regimes and (B) the 1800 days during strong vortex regimes. 1000 0 -90 -60 -30 0 30 60 90 the PDFs, especially between the tails of the Lag (Days) curves.+AO at Values of AO or NAO index greater Fig. 2. Composites of time-height development of the northern annular mode for (A) 18 weak the surface than 1.0 are three to four times as likely during Baldwin and DunKerton 2001 vortex events and (B) 30 strong vortex events. The events are determined by the dates on which strong vortex regimes than weak vortex re- the 10-hPa annular mode values cross –3.0 and ϩ1.5, respectively. The indices are nondimensional; gimes. Similarly, index values less than Ϫ1.0 the contour interval for the color shading is 0.25, and 0.5 for the white contours. Values between are three to four times as likely during weak Ϫ0.25 and 0.25 are unshaded. The thin horizontal lines indicate the approximate boundary vortex regimes than strong vortex regimes. Val- between the troposphere and the stratosphere. ues of the daily AO index greater than 1.0 and less than Ϫ1.0 are associated with statistically Stratospheric and tropospheric annular “strong vortex regimes,” as characterized by significant changes in the probabilities of mode variations are sometimes independent of the normalized AO index (22). The average weather extremes such as cold air outbreaks, each other, but (on average) strong anomalies value (1080 days) during weak vortex re- snow, and high winds across Europe, Asia, and just above the tropopause appear to favor tro- gimes is Ϫ0.44, and ϩ0.35 for strong vortex North America (25). The observed circulation pospheric anomalies of the same sign. Oppos- regimes (1800 days). The large sample sizes changes during weak and strong vortex regimes ing anomalies as in December 1998 (Fig. 1) are contribute to the high statistical significance are substantial from a meteorological viewpoint possible, but anomalies of the same sign dom- of these averages (23). During the weak and and can be anticipated by observing the strato- inate the average (Fig. 2). strong vortex regimes the average surface sphere. These results imply a measure of pre- To examine the tropospheric circulation pressure anomalies (Fig. 3) are markedly like dictability, up to 2 months in advance, for AO/ after these extreme events, we define weak opposite phases of the AO (11) or NAO (14), NAO variations in northern winter, particularly and strong vortex “regimes” as the 60-day with the largest effect on pressure gradients for extreme values that are associated with un- periods after the dates on which the Ϫ3.0 and in the North Atlantic and Northern Europe. usual weather events having the greatest impact ϩ1.5 thresholds were crossed. Our results are The probability density functions (PDFs) of on society. not sensitive to the exact range of days used the daily normalized AO and NAO indices (24) Since the NAO and AO are known to mod- and do not depend on the first few days after during weak and strong vortex regimes are ulate the position of surface cyclones across the the “events.” We focus on the average behav- compared in Fig. 4. More pronounced than the Atlantic and Europe, we examine the tracks of ior during these “weak vortex regimes” and shift in means are differences in the shapes of surface cyclones with central pressure less than 582 19 OCTOBER 2001 VOL 294 SCIENCE www.sciencemag.org The stratospheric polar vortex Zonal mean zonal wind (m s-1) at 10 hPa and 65°N mean 80 60 40 20 Winter (Nov- Feb) 0 10 hPa height (m) −20 and wind (m s-1) −40 The winter of 2014/2015 zonal mean zonal wind 10 hPa 65°N The winter of 2014/2015 zonal mean zonal wind 10 hPa 65°N Final warming Zonal mean zonal wind rapid deceleraons The winter of 2014/2015 zonal mean zonal wind KarpetcKo and Nikulin (2004) 10 hPa 65°N Nov/Dec wave acavity is negavely correlated with Jan/Feb wave acavity 4446 JOURNAL OF CLIMATE VOLUME 17 4446 JOURNAL OF CLIMATE VOLUME 17 plane channel model. They found that, when wave forc- ing at the lower boundary isplane raised channel beyond model. a critical They found that, when wave forc- amplitude, the eddy componentsing at and the mean lower zonal boundary flow is raised beyond a critical in the stratosphere oscillateamplitude, quasiperiodically. the eddy In components their and mean zonal flow model vertically propagatingin planetary the stratosphere waves 1 oscillate and 2 quasiperiodically. In their decelerate westerly zonal flowmodel until vertically it turns into propagating east- planetary waves 1 and 2 erlies. Since planetary wavesdecelerate cannot propagate westerly in zonal east- flow until it turns into east- erlies (Charney and Drazin 1961),erlies. this Since results planetary in trapping waves cannot propagate in east- of the waves. In the absenceerlies of wave (Charney forcing and the Drazin strato- 1961), this results in trapping sphere relaxes to the radiativeof the equilibrium, waves. In thewesterlies absence of wave forcing the strato- are recovered, and waves cansphere againBacKground relaxes propagate to the into radiative the equilibrium, westerlies stratosphere. This mechanismare suggests recovered, that and the waves period can again propagate into the 4446 of oscillationsJOURNAL is determined OFstratosphere. by CLIMATE the time that This the mechanism strato- suggests that theVOLUME period17 sphere takes to relax to theof radiative oscillationsJan/Feb zonal mean zonal wind equilibrium. is determined The by the time that the strato- plane channel model. They foundperiod that, of the when vacillations wave forc- is roughlysphereWeak takes 2–3 months, to Nov/Dec wave acavity relax which to the radiative equilibrium. The Strong Nov/Dec wave acavity ing at the lower boundary iscoincides raised beyond with the a period critical of theperiod heat of flux the anticorrelation vacillations is roughly 2–3 months, which amplitude, the eddy componentsfound and here. mean zonal flow coincides with the period of the heat flux anticorrelation in the stratosphere oscillate quasiperiodically.Aconnectionbetweeneddycomponentsandmean In their found here. model vertically propagatingzonal planetary flow oscillations waves 1 and was 2 afterwardAconnectionbetweeneddycomponentsandmean found in general decelerate westerly zonal flowcirculation until it turns models into and east- inzonal observations flow oscillations (Cristiansen was afterward found in general erlies. Since planetary waves1999, cannot 2001). propagate Cristiansen in east- (2001)circulation pointed models out that and these in observations (Cristiansen erlies (Charney and Drazin 1961),oscillations this results originate in trapping from competition1999, 2001). between Cristiansen zonal (2001) pointed out that these of the waves. In the absencewind of wave deceleration forcing the caused strato- by verticaloscillations convergence originate of from the competition between zonal sphere relaxes to the radiativevertical equilibrium, component westerlies of the EPwind flux deceleration and zonal wind caused ac- by vertical convergence of the are recovered, and waves canceleration again propagate caused into by relaxation the vertical toward component the radiative of the EP flux and zonal wind ac- stratosphere. This mechanismequilibrium. suggests that Figure the 3period showsceleration the JF wind caused anomalies by relaxation for toward the radiative of oscillations is determinedyears by the with time the that weak the strato- and strongequilibrium. ND heat flux Figure as well 3 shows as the JF wind anomalies for sphere takes to relax to thetheir radiative differences. equilibrium. Only Thewintersyears when with the the ND weak normalized and strong ND heat flux as well as period of the vacillations is roughlylatitudinal 2–3 averaged months, heatwhich fluxtheir anomalies differences. at 20 OnlyhPa were winters when the ND normalized coincides with the period of themore heat (1985, flux anticorrelation 1994, 1998, 2001,latitudinal 2002) averaged or less (1980, heat flux anomalies at 20 hPa were found here. 1981, 1989, 1990, 1996, 2000)more thanJanuary/ (1985, 1 s were 1994, included 1998, 2001, 2002) or less (1980, Aconnectionbetweeneddycomponentsandmeanin these statistics. It is seen1981, that, 1989, when 1990, wave 1996, flux is 2000) than 1 s were included zonal flow oscillations was afterwardweak in the found early in winter, general thein midwinter theseFebruary zonal statistics. polar night It is jet seen that, when wave flux is circulation models and inis observations well developed (Cristiansen between 60weak8 and in 70 the8N(Fig.3a).In early winter, the midwinter polar night jet contrast, when the early winteris well heatmean zonal developed flux is strong, between the 608 and 708N(Fig.3a).In 1999, 2001).
Recommended publications
  • (QBO) Impact on the Boreal Winter Polar Vortex
    https://doi.org/10.5194/acp-2019-1119 Preprint. Discussion started: 14 January 2020 c Author(s) 2020. CC BY 4.0 License. A tropospheric pathway of the stratospheric quasi-biennial oscillation (QBO) impact on the boreal winter polar vortex Koji Yamazaki1, Tetsu Nakamura1, Jinro Ukita2, and Kazuhira Hoshi3 5 1Faculty of Environmental Earth Science, Hokkaido University, Sapporo, 060-0810, Japan 2Faculty of Science, Niigata University, Niigata, 950-2181, Japan 3Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan 10 Correspondence to: Koji Yamazaki ([email protected]) Abstract. The quasi-biennial oscillation (QBO) is quasi-periodic oscillation of the tropical zonal wind in the stratosphere. When the tropical lower stratospheric wind is easterly (westerly), the winter Northern Hemisphere (NH) stratospheric polar vortex tends to be weak (strong). This relation is known as Holton-Tan relationship. Several mechanisms for this relationship have been proposed, especially linking the tropics with high-latitudes through stratospheric pathway. Although QBO impacts 15 on the troposphere have been extensively discussed, a tropospheric pathway of the Holton-Tan relationship has not been explored previously. We here propose a tropospheric pathway of the QBO impact, which may partly account for the Holton- Tan relationship in early winter, especially in the November-December period. The study is based on analyses on observational data and results from a simple linear model and atmospheric general circulation model (AGCM) simulations. The mechanism is summarized as follows: the easterly phase of the QBO is accompanied with colder temperature in the 20 tropical tropopause layer, which enhances convective activity over the tropical western Pacific and suppresses over the Indian Ocean, thus enhancing the Walker circulation.
    [Show full text]
  • Program At-A-Glance
    Sunday, 29 September 2019 Dinner (6:30–8:00 PM) ___________________________________________________________________________________________________ Monday, 30 September 2019 Breakfast (7:00–8:00 AM) Session 1: Extratropical Cyclone Structure and Dynamics: Part I (8:00–10:00 AM) Chair: Michael Riemer Time Author(s) Title 8:00–8:40 Spengler 100th Anniversary of the Bergen School of Meteorology Paper Raveh-Rubin 8:40–9:00 Climatology and Dynamics of the Link Between Dry Intrusions and Cold Fronts and Catto Tochimoto 9:00–9:20 Structures of Extratropical Cyclones Developing in Pacific Storm Track and Niino 9:20–9:40 Sinclair and Dacre Poleward Moisture Transport by Extratropical Cyclones in the Southern Hemisphere 9:40–10:00 Discussion Break (10:00–10:30 AM) Session 2: Jet Dynamics and Diagnostics (10:30 AM–12:10 PM) Chair: Victoria Sinclair Time Author(s) Title Breeden 10:30–10:50 Evidence for Nonlinear Processes in Fostering a North Pacific Jet Retraction and Martin Finocchio How the Jet Stream Controls the Downstream Response to Recurving 10:50–11:10 and Doyle Tropical Cyclones: Insights from Idealized Simulations 11:10–11:30 Madsen and Martin Exploring Characteristic Intraseasonal Transitions of the Wintertime Pacific Jet Stream The Role of Subsidence during the Development of North American 11:30–11:50 Winters et al. Polar/Subtropical Jet Superpositions 11:50–12:10 Discussion Lunch (12:10–1:10 PM) Session 3: Rossby Waves (1:10–3:10 PM) Chair: Annika Oertel Time Author(s) Title Recurrent Synoptic-Scale Rossby Wave Patterns and Their Effect on the Persistence of 1:10–1:30 Röthlisberger et al.
    [Show full text]
  • Reducing Tornado Fatalities Outside Traditional “Tornado
    Reducing Tornado Fatalities Outside Traditional “Tornado Alley” Erin A. Thead May 2016 Introduction Atmospheric scientists have long suspected that climate change produces an increase in weather extremes of all varieties, but tornadoes are an unusually tricky case. A recent publication from the National Academy of Sciences summarizes the state of the art in the new discipline of event attribution, finding that that, although tornadoes are among the most difficult extreme weather events attribute to anthropogenic climate change, improvements in modeling and climate-weather model coupling have made possible some degree of probabilistic attribution.1 At present it seems likely that the influence of climate change on tornadoes is indirect, manifested largely by more direct influences on natural climate cycles such as the amplitude of waves in the jet stream that bounds the polar vortex and the El Niño-Southern Oscillation (ENSO), with which severe tornado seasons and their predominant locations have been loosely linked.2,3 Researchers are not yet in a position to say for sure what if any role climate change has played in the increases in tornado frequency and severity we have seen over the past 50 years.4 However, we need not wait until these issues are sorted out to begin working to protect vulnerable populations. In what follows, I first give some background on the increasingly significant threat posed by tornadoes and then outline some proactive steps governments and other entities can take to keep people safe. A Disturbing Trend A disturbing trend has already developed concerning tornado fatalities. After several decades of decline that can largely be credited to a great increase in forecasting skills and warning lead time, the United States fatality rate for tornadoes has leveled off, although there may have been a slight increase in recent years.
    [Show full text]
  • Observed Cyclone–Anticyclone Tropopause Vortex Asymmetries
    JANUARY 2005 H A K I M A N D CANAVAN 231 Observed Cyclone–Anticyclone Tropopause Vortex Asymmetries GREGORY J. HAKIM AND AMELIA K. CANAVAN University of Washington, Seattle, Washington (Manuscript received 30 September 2003, in final form 28 June 2004) ABSTRACT Relatively little is known about coherent vortices near the extratropical tropopause, even with regard to basic facts about their frequency of occurrence, longevity, and structure. This study addresses these issues through an objective census of observed tropopause vortices. The authors test a hypothesis regarding vortex-merger asymmetry where cyclone pairs are repelled and anticyclone pairs are attracted by divergent flow due to frontogenesis. Emphasis is placed on arctic vortices, where jet stream influences are weaker, in order to facilitate comparisons with earlier idealized numerical simulations. Results show that arctic cyclones are more numerous, persistent, and stronger than arctic anticyclones. An average of 15 cyclonic vortices and 11 anticyclonic vortices are observed per month, with maximum frequency of occurrence for cyclones (anticyclones) during winter (summer). There are are about 47% more cyclones than anticyclones that survive at least 4 days, and for longer lifetimes, 1-day survival probabilities are nearly constant at 65% for cyclones, and 55% for anticyclones. Mean tropopause potential-temperature amplitude is 13 K for cyclones and 11 K for anticyclones, with cyclones exhibiting a greater tail toward larger values. An analysis of close-proximity vortex pairs reveals divergence between cyclones and convergence be- tween anticyclones. This result agrees qualitatively with previous idealized numerical simulations, although it is unclear to what extent the divergent circulations regulate vortex asymmetries.
    [Show full text]
  • The North Atlantic Variability Structure, Storm Tracks, and Precipitation Depending on the Polar Vortex Strength
    Atmos. Chem. Phys., 5, 239–248, 2005 www.atmos-chem-phys.org/acp/5/239/ Atmospheric SRef-ID: 1680-7324/acp/2005-5-239 Chemistry European Geosciences Union and Physics The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength K. Walter1 and H.-F. Graf1,2 1Max-Planck-Institute for Meteorology, Bundesstrasse 54, D-20146 Hamburg, Germany 2Centre for Atmospheric Science, University of Cambridge, Dept. Geography, Cambridge, CB2 3EN, UK Received: 10 June 2004 – Published in Atmos. Chem. Phys. Discuss.: 5 October 2004 Revised: 7 December 2004 – Accepted: 27 January 2005 – Published: 1 February 2005 Abstract. Motivated by the strong evidence that the state 1 Introduction of the northern hemisphere vortex in boreal winter influ- ences tropospheric variability, teleconnection patterns over During boreal winter the climate in large parts of the North- the North Atlantic are defined separately for winter episodes ern Hemisphere is under the influence of the North Atlantic where the zonal wind at 50 hPa and 65◦ N is above or below Oscillation (NAO). The latter constitutes the dominant mode the critical velocity for vertical propagation of zonal plane- of tropospheric variability in the North Atlantic region in- tary wave 1. We argue that the teleconnection structure in the cluding the North American East Coast and Europe, with ex- middle and upper troposphere differs considerably between tensions to Siberia and the Eastern Mediterranean. The NAO the two regimes of the polar vortex, while this is not the case is characterised by a meridional oscillation of mass between at sea level. If the polar vortex is strong, there exists one two major centres of action over the subtropical Atlantic and meridional dipole structure of geopotential height in the up- near Iceland: the Azores High and the Iceland Low.
    [Show full text]
  • Interaction of Tropical Cyclones with a Dipole Vortex
    Chapter 2 Interaction of Tropical Cyclones with a Dipole Vortex Ismael Perez‐Garcia, Alejandro Aguilar‐Sierra and Jaime Hernández Additional information is available at the end of the chapter http://dx.doi.org/10.5772/65953 Abstract The purpose of this chapter is to discuss certain disturbances around the pole of a Venus–type planet that result as a response to barotropic instability processes in a zonal flow. We discuss a linear instability of normal modes in a zonal flow through the barotropic vorticity equations (BVEs). By using a simple idealization of a zonal flow, the instability is employed on measurements of the upper atmosphere of Venus. In 1998, the tropical cyclone Mitch gave way to the observational study of a dipole vortex. This dipole vortex might have helped to intensify the cyclone and moved it towards the SW. In order to examine this process of interaction, the nonlinear BVE was integrated in time applied to the 800–200 hPa average layer in the previous moment when it moved towards the SW. The 2-day integrations carried out with the model showed that the geometric structure of the solution can be calculated to a good approximation. The solution HLC moves very fast westwards as observed. On October 27, the HLA headed north-eastward and then became quasi-stationary. It was also observed that HLA and HLC as a coupled system rotates in the clockwise direction. Keywords: polar vortices Venus, barotropic vorticity equation, normal mode instabil- ity, tropical cyclone, American monsoon system. 1. Introduction The air at the equatorial regions rises when heated by the sun and as it does, it cools down and sinks.
    [Show full text]
  • Spring 2014 Volume V-1
    The Coastal Front Spring 2014 Volume V-1 Skywarn Spotter Training Photo by John Jensenius By Chris Kimble, Forecaster Inside This Issue: Over the last several decades, technology has greatly improved our ability to observe and forecast the weather. Tools like satellite and radar provide more insight than ever into what the weather is doing Severe WX: Be Prepared Page 2 right now. Computers have allowed for greater integration of all the Dual Pol Radar Page 3 data, and complex forecast models provide valuable insight into how Winter Weather Review Page 4 weather systems will evolve over the next several days. But, no matter how December Ice Storm Page 5 advanced technol- Polar Vortex Explained Page 6 ogy has become, Staff Profile Page 7 forecasters rely on Note From the Editors Page 9 volunteers to re- port the ground truth of what’s Editor-in-Chief: Chris Kimble really happening in their town. Editors: Stacie Hanes Margaret Curtis While weather Michael Kistner radar is a great Figure 1: A supercell thunderstorm tracks across Nichole Becker tool to view Portland, Maine on June 23, 2013. Photo by Chris thunderstorms and Legro. Meteorologist in Charge (MIC): Hendricus Lulofs other precipitation events above the ground, there are often significant gaps between Warning Coordination what the radar sees above the ground and what is observed at ground Meteorologist (WCM): John Jensenius level where it matters most. Skywarn Storm Spotters provide invaluable information to NWS forecasters during and after severe thunderstorms, tornadoes, flash floods, and snow storms. If you have an interest in weather and want to become a volunteer Skywarn Storm Spotter, attend one of our Skywarn training sessions.
    [Show full text]
  • 5. Analyses and Forecasts of Stratospheric Winter Polar Vortex Break-Up: September 2002 in the Southern Hemisphere and Related Events from ECMWF Operations and ERA-40
    ERA-40 Project Report Series 5. Analyses and forecasts of stratospheric winter polar vortex break-up: September 2002 in the Southern Hemisphere and related events from ECMWF operations and ERA-40 Adrian Simmons, Mariano Hortal, Graeme Kelly, Anthony McNally, Agathe Untch and Sakari Uppala European Centre for Medium-Range Weather Forecasts Europäisches Zentrum für mittelfristige Wettervorhersage Centre européen pour les prévisions météorologiques à moyen terme For additional copies contact: The Library ECMWF Shinfield Park Reading, Berks RG2 9AX [email protected] Series: ERA40 Project Report Series A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ © Copyright 2003 European Centre for Medium Range Weather Forecasts Shinfield Park, Reading, Berkshire RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non- commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. ERA-40 project report series no.5 Analyses and forecasts of stratospheric winter polar vortex break-up: September 2002 in the southern hemisphere and related events from ECMWF operations and ERA-40 Adrian Simmons, Mariano Hortal, Graeme Kelly, Anthony McNally, Agathe Untch and Sakari Uppala Research Department March 2003 Analyses and forecasts of stratospheric winter polar vortex break-up ABSTRACT Break-up of the polar stratospheric vortex in the northern hemisphere is an event that is known to be predictable for up to a week or so ahead.
    [Show full text]
  • Explaining the Trends and Variability in the United States Tornado Records
    www.nature.com/scientificreports OPEN Explaining the trends and variability in the United States tornado records using climate teleconnections and shifts in observational practices Niloufar Nouri1*, Naresh Devineni1,2*, Valerie Were2 & Reza Khanbilvardi1,2 The annual frequency of tornadoes during 1950–2018 across the major tornado-impacted states were examined and modeled using anthropogenic and large-scale climate covariates in a hierarchical Bayesian inference framework. Anthropogenic factors include increases in population density and better detection systems since the mid-1990s. Large-scale climate variables include El Niño Southern Oscillation (ENSO), Southern Oscillation Index (SOI), North Atlantic Oscillation (NAO), Pacifc Decadal Oscillation (PDO), Arctic Oscillation (AO), and Atlantic Multi-decadal Oscillation (AMO). The model provides a robust way of estimating the response coefcients by considering pooling of information across groups of states that belong to Tornado Alley, Dixie Alley, and Other States, thereby reducing their uncertainty. The infuence of the anthropogenic factors and the large-scale climate variables are modeled in a nested framework to unravel secular trend from cyclical variability. Population density explains the long-term trend in Dixie Alley. The step-increase induced due to the installation of the Doppler Radar systems explains the long-term trend in Tornado Alley. NAO and the interplay between NAO and ENSO explained the interannual to multi-decadal variability in Tornado Alley. PDO and AMO are also contributing to this multi-time scale variability. SOI and AO explain the cyclical variability in Dixie Alley. This improved understanding of the variability and trends in tornadoes should be of immense value to public planners, businesses, and insurance-based risk management agencies.
    [Show full text]
  • A Quick Guide to Important Drivers of US Winter Weather Patterns
    A Quick Guide to Important Drivers of US Winter Weather Patterns Web: www.frontierweather.com Email: [email protected] Phone: 918-252-7791 Twitter: @FrontierWeather Facebook: www.facebook.com/frontierweather KEY TERMS NORMAL YEAR PATTERN El Niño: An anomalous warming of the No strong SST anomalies central and eastern equatorial Pacific that occurs every 3-7 years. SST: Sea Surface Temperature Niño 3.4: A region of the Pacific between 5°N – 5°S and 120° – 170°W. SST Trade winds blow from east to west, concentrating the warmest water anomalies in this region are often used to and most of the tropical convection in the western tropical Pacific. define El Niño. Average actual SST pattern, not anomalies wind direction ONI: Oceanic Niño Index, a 3 month warmest average of the Nino 3.4 anomalies. water MEI: Multivariate ENSO Index. A six variable composite index of El Niño. EL NINO YEAR PATTERN Shifts in tropical convection are what drive global weather pattern changes during El Niño. SST anomaly pattern Tropical convection strength and location is directly tied to the location and intensity of the warmest anomalies warmest water temperatures. Warmer peak equatorial water temperatures (not anomalies), tend to produce colder eastern US winters. Trade winds slacken or even reverse, allowing warmer water to flow eastward. This shifts tropical convection eastward as well. Average actual SST pattern, not anomalies wind direction warmest water can flip to west El Niño and US Winter Weather Strong El Niño events have cooler peak water temperatures near the dateline. When warm anomalies are located farther west or when the western tropical Pacific stays warm during El Niño, peak water temperatures are higher, and tropical convection is stronger near and west of the dateline.
    [Show full text]
  • The Role of Tropopause Polar Vortices in the Intensification of Summer
    https://doi.org/10.5194/wcd-2021-30 Preprint. Discussion started: 7 June 2021 c Author(s) 2021. CC BY 4.0 License. The role of tropopause polar vortices in the intensification of summer Arctic cyclones Suzanne L. Gray1, Kevin I. Hodges1,2, Jonathan L. Vautrey1,*, and John Methven1 1Department of Meteorology, University of Reading, Reading, RG6 6ET, UK 2National Centre for Atmospheric Science, University of Reading, Reading, RG6 6ET, UK *Now at Met Office, Exeter, UK Correspondence: Suzanne Gray ([email protected]) Abstract. Human activity in the Arctic is increasing as new regions become accessible, with a consequent need for improved understanding of hazardous weather there. Arctic cyclones are the major weather systems affecting the Arctic environment during summer, including the sea ice distribution. Meso- to synoptic-scale tropopause polar vortices (TPVs) frequently occur in polar regions and are a proposed mechanism for Arctic cyclone genesis and intensification. However, while the importance 5 of pre-existing tropopause-level features for cyclone development, and their existence as part of the three-dimensional mature cyclone structure, is well established in the mid-latitudes, evidence of the importance of pre-existing TPVs for Arctic cyclone development is mainly limited to a few case studies. Here we examine the extent to which Arctic cyclone growth is coupled to TPVs by analysing a climatology of summer Arctic cyclones and TPV characteristics produced by tracking both features in the latest ECMWF reanalysis (ERA5). 10 The annual counts of Arctic cyclones and TPVs are significantly correlated for features with genesis either within or outside the Arctic, implying that TPVs have a role in the development of Arctic cyclones.
    [Show full text]
  • Gravity Wave Effects on Polar Vortex Geometry During Split-Type Sudden Stratospheric Warmings
    Gravity Wave Effects on Polar Vortex Geometry During Split-Type Sudden Stratospheric Warmings J. R. Albers1, T. Birner1 1Department of Atmospheric Science, Colorado State University, Fort Collins, CO USA Sudden stratospheric warmings represent one of the most compelling tests of our ability to explain and predict the dynamical circulation of the stratosphere. Yet despite significant recent progress in the classification of the geometric structure and evolution of sudden warmings (e.g. split versus displacement events), our understanding of the dynamics underlying these events remains elusive. This fact is especially glaring in light of the fact that stratosphere-troposphere coupling is particularly strong during and after sudden warming events, and therefore our ability to predict tropospheric climate and weather could be improved by gaining a more clear understanding of the dynamics underlying sudden warming events. The traditional sudden stratospheric warming paradigm states that an anomalously strong pulse of planetary wave activity from the troposphere is required in order to trigger an event. However, the results of Matthewman and Esler (JAS 2011) contradict this hypothesis by pointing out that resonant excitation and vortex breakdown can occur for relatively weak wave forcing. With this idea in mind, we utilize reanalysis data to revisit and revise the traditional hypothesis of the necessary conditions for triggering a sudden warming. In this study, reanalysis (JRA25) data, including parameterized gravity wave drag, which extends upwards into the lower mesosphere (~55 km) is used to explore the relationship between gravity wave and planetary wave variability and polar vortex geometry prior to sudden stratospheric warming events. In particular, an attempt is made to identify the key geometric features of the polar vortex that are common to the development of all split-type warming events.
    [Show full text]