cells Review Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models Verónica A. García-García 1,2, Josefa P. Alameda 1,2,3, Angustias Page 1,2,3 and María Llanos Casanova 1,2,3,* 1 Molecular and Translational Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain;
[email protected] (V.A.G.-G.);
[email protected] (J.P.A.);
[email protected] (A.P.) 2 Biomedical Research Institute I+12, 12 de Octubre University Hospital, 28040 Madrid, Spain 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence:
[email protected] Abstract: Ageing is a complex process, induced by multifaceted interaction of genetic, epigenetic, and environmental factors. It is manifested by a decline in the physiological functions of organisms and associated to the development of age-related chronic diseases and cancer development. It is considered that ageing follows a strictly-regulated program, in which some signaling pathways critically contribute to the establishment and maintenance of the aged state. Chronic inflammation is a major mechanism that promotes the biological ageing process and comorbidity, with the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) as a crucial mediator of inflammatory responses. This, together with the finding that the activation or inhibition of NF- κ B can induce or reverse respectively the main features of aged organisms, has brought it under consideration as a key transcription factor that acts as a driver of ageing. In this review, we focused on the data obtained entirely through the generation of knockout and transgenic mouse models of Citation: García-García, V.A.; Alameda, J.P.; Page, A.; Casanova, either protein involved in the NF-κB signaling pathway that have provided relevant information M.L.