Rapid Pest Risk Analysis (PRA) For: Aphis Nerii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphids Associated with Papaya Plants in Puerto Rico and Florida12
Aphids associated with papaya plants in Puerto Rico and Florida12 Alberto Pantoja3, Jorge Peña4, Wilfredo Robles5, Edwin Abreu6, Susan Halbert7, María de Lourdes Lugo8, Elias Hernández9 and Juan Ortiz10 J. Agrie. Univ. P.R. 90(l-2):99-107 (2006) ABSTRACT Aphids associated with papaya plants were collected from two sites in Puerto Rico (Isabela and Corozal) and three farms in Homestead, Florida. Between the two regions, Florida and Puerto Rico, twenty-one species of aphids from 12 genera were identified: Aphis sp., Aphis illinoisensis Shimer, Aphis spiraecola Patch, Aphis gossypii Glover, Aphis craccivora Koch, Aphis /dd/ef on/7 (Thomas), Aphis ner/7'Boyer de Fonscolombe, Hyperomyzus carduellinus (Theobald), Hysteroneura setariae (Thomas), Lipaphis pseudo- brassicae (Davis), Picturaphis sp., Pentalonia nigronervosa Coquerel, Schizaphis graminum (Rondani), Sarucallis kahawaluokalani (Kirkaldy), Shinjia orientalis (Mordvilko), Schizaphis rotundiventris (Signoret), Tox- optera citricida (Kilkardy), Toxoptera aurantii (Boyer de Fonscolombe), Tetra- neura nigriabdominalis (Sasaki), Uroleucon ambrosiae (Thomas), and Uroleucon pseudoambrosiae (Olive). The number of species was greater in Florida (n = 14) than in Puerto Rico (n = 11). Differences among species were also found between sites in Puerto Rico, with 10 species in Corozal and six in Isabela. Only one species, A. illinoisensis, was common at all sites sam pled, whereas three additional species, A. spiraecola, A. gossypii, and A. craccivora were collected in both the Corozal, Puerto Rico, and the Florida areas. The difference in species composition between Puerto Rican sites 'Manuscript submitted to Editorial Board 12 July 2005. 2The authors wish to recognize T. Adams and D. Fielding, USDA-ARS, Fairbanks, Alaska, for critical reviews of an earlier version of this manuscript. -
"Virus Transmission by Aphis' Gossypii 'Glover to Aphid-Resistant And
J. AMER. Soc. HORT. SCI. 117(2):248-254. 1992. Virus Transmission by Aphis gossypii Glover to Aphid-resistant and Susceptible Muskmelons Albert N. Kishaba1, Steven J. Castle2, and Donald L. Coudriet3 U.S. Department of Agriculture, Agricultural Research Service, Boyden Entomology Laborato~, University of California, Riverside, CA 92521 James D. McCreight4 U.S. Department of Agriculture, Agricultural Research Service, U.S. Agricultural Research Station, 1636 East Alisal Street, Salinas, CA 93905 G. Weston Bohn5 U.S. Department of Agriculture, Agricultural Research Service, Irrigated Desert Research Station, 4151 Highway 86, Brawley, CA 92227 Additional index words. Cucumis melo, watermelon mosaic virus, zucchini yellow mosaic virus, melon aphid, melon aphid resistance Abstract. The spread of watermelon mosaic virus by the melon aphid (Aphis gossypii Glover) was 31%, 74%, and 71% less to a melon aphid-resistant muskmelon (Cucumis melo L.) breeding line than to the susceptible recurrent parent in a field cage study. Aphid-resistant and susceptible plants served equally well as the virus source. The highest rate of infection was noted when target plants were all melon-aphid susceptible, least (26.7%) when the target plants were all melon-aphid resistant, and intermediate (69.4%) when the target plants were an equal mix of aphid-resistant and susceptible plants. The number of viruliferous aphids per plant required to cause a 50% infection varied from five to 20 on susceptible controls and from 60 to possibly more than 400 on a range of melon aphid- resistant populations. An F family from a cross of the melon aphid-resistant AR Topmark (AR TM) with the susceptible ‘PMR 45’ had significantly less resistance to virus transmission than AR TM. -
Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands. -
2020 Majura Ainslie Plant List.Xlsx
Plant Species List for Mount Majura and Mount Ainslie, Canberra Base data from Ingwerson, F; O. Evans & B. Griffiths. (1974). Vegetation of the Ainslie-Majura Reserve . Conservation Series No. 2. AGPS Canberra. Re-organised, revised and updated by Michael Doherty, CSIRO Ecosystem Sciences and Waltraud Pix, Friends of Mt. Majura With advice from Isobel Crawford, Australian Botanical Surveys Current version of 01.10.2020 Names: Census of Plants of the Australian Capital Territory, Version 4.1, 2019 Enquiries:Version 3.0 [email protected] (8th June 2012) subsp. = subspecies Form ? = questionable status or identity f = herb, forb sp. aff. = having close affinities with i.e. similar but not quite the sameo = herb, orchid syn. = synonymous with i.e. most recent previous name, or alternativeg = nameherb, grass sens. lat. = in the broad sense of the species concept gl = herb, grass- or sedge-like var. = variety s = shrub (including creeper and climber) sp. = species i.e. identity yet to be finalised st = shrub / small tree spp. = species in the plural i.e. more than one species t = tree MM Mount Majura. Notionally north of “Blue Metal” Road; MA Mount Ainslie. Notionally south of “Blue Metal” Road (VVV) Species occurrence checking; currently focused on Mt. Majura rather than Mt. Ainslie. No ticks next to name = species reported but not yet confirmed for Mt Majura and Mt Ainslie. Status is locally native except for: PE = Planted Exotic PN = Planted Non-local Native WE = Weed Exotic WN = Weed Non-local Native ‘Planted’ status refers to individuals which are planted but not spreading ‘Weed’ status refers to species reproducing in the wild Scientific name Common name MM MA Status Form Family Isolepis sp . -
Interaction of Tobacco Etch Virus and the Root-Knot Nematode, Meloidogyne Incognita in Chile Pepper, Capsicum Frutescens
Interaction of tobacco etch virus and the root-knot nematode, Meloidogyne incognita in chile pepper, Capsicum frutescens Item Type text; Thesis-Reproduction (electronic) Authors Koenning, Stephen Robert Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 25/09/2021 20:46:59 Link to Item http://hdl.handle.net/10150/555147 INTERACTION OF TOBACCO ETCH VIRUS AND THE ROOT-KNOT NEMATODE, MELOIDOGYNE INCOGNITA IN CHILE PEPPER, CAPSICUM FRUTESCENS by Stephen Robert Koenning A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANT PATHOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 9 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill ment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowl edgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the inter ests of scholarship. -
Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids. -
Distribution, Hosts and Biology of Diaeretiella Rapae (M'intosh
Pakistan J. Zool., vol. 44(5), pp. 1307-1315, 2012. Distribution, Hosts and Biology of Diaeretiella rapae (M’Intosh) (Hymenoptera: Braconidae: Aphidiinae) in Punjab, Pakistan Imran Bodlah,* Muhammad Naeem and Ata Ul Mohsin Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Abstract .- Diaeretiella rapae (M’Intosh) (Hymenoptera: Braconidae, Aphidiinae ) aphid parasitoid is reported from various districts of Punjab Province of Pakistan from a wide range of host aphids and plant associations, including some new evidences. Biological information centered development, life-stages and their micrographes, mating and oviposition, adult lon gevity and food have been discussed. Biology of the parasitoid reared on Myzus persicae aphids in the laboratory at 23±1°C have been discussed. The development cycle from larva to adult was completed in about 11.5 days at 21-23°C. The pre-mating period of males (n=10) varied between 20 and 40 minutes (mean: 28.8 min), however it was longer in females most of which rejected all copulatory attempts at least two hours after emergence . When newly emerged females were confined with males for a period of 12 h, all mated i.e., they produced progeny of both sexes. Copulation time (n = 10 pairs) was between 30 and 60 s (mean: 46.3 s). Oviposition time (n = 10 females) was between 46 and 64 s (mean: 52.6 s). Female lived longer (11.1± 0.16 days) than males (9.4 ± 0.18 days) when offered honey and water. The lifespan of adult females was shorter (10.2 ± 0.05 days) in the presence of host aphids and host plant leaves than only with honey and water. -
Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring. -
Seasonal Abundance and Diversity of Aphids (Homoptera: Aphididae) in a Pepper Production Region in Jamaica
POPULATION ECOLOGY Seasonal Abundance and Diversity of Aphids (Homoptera: Aphididae) in a Pepper Production Region in Jamaica 1 2 3 SHARON A. MCDONALD, SUSAN E. HALBERT, SUE A. TOLIN, AND BRIAN A. NAULT Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 Environ. Entomol. 32(3): 499Ð509 (2003) ABSTRACT Seasonal dispersal and diversity of aphid species were monitored on pepper farms in St. Catherine, Jamaica throughout 1998 and 1999 to identify the most likely vectors of tobacco etch virus (TEV) in pepper Þelds. Flight activity was monitored weekly on Þve farms using water pan traps. More than 30 aphid species were identiÞed, 12 of which are new records for Jamaica. Ninety-two percent of the aphids captured from October 1998 through July 1999 belonged to only seven of the Ͼ30 species identiÞed. Of these seven species, Aphis gossypii Glover and those in the Uroleucon ambrosiae (Thomas) complex comprised more than two-thirds of the total. Five known vectors of TEV were captured: A. gossypii, Aphis craccivora Koch, Aphis spiraecola Patch, Myzus persicae (Sulzer), and Lipaphis pseudobrassicae Davis. Generally, more aphids were collected from mid-September through mid-May than from mid-May through mid-September. The inßuence that rainfall and temperature had on periods of aphid ßight activity also was investigated. Results indicated that ßight of some species increased 3Ð4 wk after a rainfall event, whereas temperature did not appear to affect ßight activity. High populations of A. gossypii as well as the presence of four additional known TEV vectors were encountered in October and November, which is the period that signiÞcant acreage is transplanted to pepper for harvest to coincide with the winter export market. -
Staff Assessment Report APP203667: an Application to Import
EPA advice for APP203667 Staff Assessment Report APP203667: An application to import and release the moth plant beetle (Freudeita confer cupripennis) as a biological control agent for the weed moth plant (Araujia hortorum). Purpose An application to import and release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent for the weed moth plant, Araujia hortorum Application number APP203667 Application type Notified, Full Release Applicant Waikato Regional Council Date formally received 17 January 2019 1 EPA advice for APP203667 Executive Summary and Recommendation In January 2019, Waikato Regional Council submitted an application to the Environmental Protection Authority (EPA) seeking pre-approval to release the moth plant beetle, Freudeita cf. cupripennis, as a biological control agent (BCA) for the weed moth plant, Araujia hortorum. The application was publicly notified. The EPA received 53 submissions, 23 submissions supported the application, four submissions neither supported nor opposed and 26 submissions opposed the application. The EPA assessed the risks, costs and benefits of the release of F. cf. cupripennis in the context of the environment, market economy, people and communities, public health and on the relationship of Māori and their culture and traditions with their ancestral lands, water, sites, wāhi tapu, valued flora and fauna, and other taonga. The EPA assessed that there are no direct or tangible risks to public health from the release of the moth plant beetle and this was not considered in the assessment. Regarding the environment, we assessed the benefits from the release of the moth plant beetle and found that the BCA is unlikely to reduce the use of chemicals since only a small quantity of herbicide gel is used and that broad spectrum-herbicides would continue to be used to treat other weeds. -
Aphid Parasitoids (Hymenoptera: Braconidae: Aphidiinae) in Cultivated and Non-Cultivated Areas of Markazi Province, Iran
Biologia 68/5: 966—973, 2013 Section Zoology DOI: 10.2478/s11756-013-0234-y Aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) in cultivated and non-cultivated areas of Markazi Province, Iran Mahmoud Alikhani1,AliRezwani2,PetrStarý3, Nickolas G. Kavallieratos 4 &EhsanRakhshani5* 1Department of Entomology, Faculty of Agriculture, Islamic Azad University, Arak Branch, Mail box: 38135-567,I.R.Iran; e-mail: [email protected] 2Department of Agricultural Entomology, Iranian Research Institute of Plant Protection, Tehran 1454-19395 Iran, e-mail: [email protected] 3Institute of Entomology, Academy of Sciences of the Czech Republic, Branišovská 31, 37005 České Budějovice, Czech Republic; e-mail: [email protected] 4Laboratory of Agricultural Entomology, Department of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 8 Stefanou Delta str., 14561, Kifissia, Attica, Greece; e-mail: nick [email protected] 5Department of Plant Protection, College of Agriculture, University of Zabol, 98615–538,I.R.Iran; e-mail: [email protected] Abstract: The fauna of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae), as well as their diversity and tritrophic (parasitoid-host aphid-host plant) associations in cultivated and non-cultivated areas of Markazi province, was studied during 2004–2009. Thirty species of Aphidiinae belonging to 9 genera were identified. There are presented, in total, 73 associations with 32 host aphids occurring on 42 host plants. Five parasitoid-aphid associations are newly recorded from Iran. Lysiphlebus cardui (Marshall) is newly recorded for the fauna of Iran. Lysiphlebus fabarum (Marshall) and Diaeretiella rapae (M’Intosh) were the most abundant species in non-cultivated (72.96%) and cultivated (41.17%) areas, respectively. In the non-cultivated areas, L. -
Plantderived Differences in the Composition of Aphid Honeydew
Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants Elizabeth G. Pringle1,2,3, Alexandria Novo2, Ian Ableson2, Raymond V. Barbehenn2,4 & Rachel L. Vannette5 1Michigan Society of Fellows, University of Michigan, Ann Arbor, Michigan 48109 2Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109 3School of Natural Resources and Environment, University of Michigan, Ann Arbor, Michigan 48109 4Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109 5Department of Biology, Stanford University, Stanford, California 94305 Keywords Abstract Aphis nerii, Asclepias spp., carbohydrate, – – cardenolides, Linepithema humile, milkweed, In plant ant hemipteran interactions, ants visit plants to consume the honey- phloem chemistry, tritrophic interactions. dew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran Correspondence honeydew, then the plant’s genetic constitution could have indirect effects on Elizabeth G. Pringle, Michigan Society of ants via the hemipterans. If such effects change ant behavior, they could feed Fellows, University of Michigan, Ann Arbor, back to affect the plant itself. We compared the chemical composition of hon- Michigan 48109. Tel: 734-615-4917; eydews produced by Aphis nerii aphid clones on two milkweed congeners, Fax: 734-763-0544; E-mail: [email protected] Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compo- Funding Information sitions of secondary metabolites, sugars, and amino acids differed significantly This work was supported by a Michigan in the honeydews from the two plant species.