08 IOBC Grafdepi__Reisenzein

Total Page:16

File Type:pdf, Size:1020Kb

08 IOBC Grafdepi__Reisenzein IOBC meeting, 2015 Vienna Epidemiological studies on flavescence dorée (FD) Helga Reisenzein, AGES Euphresco Partners: G.Pasquini, CRA-PAV, G. Strauß, AGES, S. Schaerer, CH-ACW, A. Bertaccini, DISTA Patologia Vegetale, B. Bagnoli, E. Gargani, CRA-ABP, M. Dermastia, N. Mehle, NIB, A.Batlle, IRTA, E. Angelini, CRA-VIT Centre for Research in Viticulture www.ages.at Austrian Agency for Health and Food Safety Current state of knowledge HOSTS Main hosts for FD phytoplasma (FDp) are Vitis vinifera and Vitis riparia Known wild species infected by FDp are Clematis vitalba Alnus sp. Ailanthus altissima www.ages.at 2 Reisenzein, AGES Current state of knowledge VECTORS The only known natural vector of FDp is leafhopper Scaphoideus titanus S. titanus; Zeisner/AGES Other leafhoppers harbouring FDp are Dictyophara europaea D. europaea; Strauss/AGES Orientus ishidae www.ages.at Reisenzein, AGES Orientus ishidae; Strauss/AGES 3 Current state of knowledge FDp STRAINS 16Sr V Map gene : FD 1, FD 2 and FD 3 16S gene : FD-D, FD-C, FD-70…. FD-D FD-C STOL www.ages.at Reisenzein, AGES 4 ERA-NET EUPHRESCO-Project: Epidemiological studies on reservoir hosts and potential vectors of Grapevine flavescence doree (FD) and validation of different diagnostic procedures for FD (GRAFDEPI) Work package 2: Epidemiological studies Graziella Pasquini, CRA-PAV Santiago Schaerer, CH-ACW Bruno Bagnoli, Elisabetta Gargani, CRA-ABP Elisa Angelini, CRA-VIT Marina Dermastia, NIB Assunta Bertaccini, University of Bologna Helga Reisenzei, Gudrun Strauß, AGES www.ages.at Assumpició Batlle, IRTA 5 Insights in New possible New potential Prevalence of reservoir host vectors of FD FD strains plants of FDp www.ages.at Reisenzein, AGES 6 Methodological approach Outbreak investigations Surveillance, risk communica- tion Hypothesis on trans- mission Environ- ment analysis Testing in the lab Field- monitoring Guidelines based on the CDC (American Centers for Human Disease Control) – adapted for FD www.ages.at Methodological approach Case investigations • FDp strain characterization of selected samples (different grape samples, wild plants and insects commonly present inside or outside the vineyards) • Molecular characterization of FDp isolates using different genes (MLST) 16S gene sec Y gene tuf gene www.ages.at Reisenzein, AGES 8 Results from transnational work – step 3: Environment analysis Reservoir host plants of FDp Different wild plants were tested Table: Wild plants and grapevines examined for the presence of FDp at different sites in Austria in the years 2012 and 2013. for the presence of FDp in Austria, Total sample number/Number Latin name Locality of FD+ tested Switzerland, Slovenia, Italy, Spain Herbaceous plants Clematis vitalba 3/3 Glanz Clematis vitalba 0/2 Bairisch Kölldorf Convolvulus sepium 0/1 Bairisch Kölldorf Convolvulus arvensis 0/1 Glanz Urica dioica 0/1 Glanz Stachys sylvatica 0/1 Glanz Salvia glutinosa 0/1 Glanz Persicaria maculosa 0/1 Bairisch Kölldorf Shrubs New reservoirRosa canina host 0/3 Bairisch Kölldorf Euonymus sp. 0/2 Bairisch Kölldorf Salix sp. 0/2 Bairisch Kölldorf plant speciesCorylus could avellana 0/1 Bairisch Kölldorf Ligustrum vugare 0/1 Bairisch Kölldorf Rubus sectio Rubus 0/1 Bairisch Kölldorf not be detectedRubus sectio Rubus 0/2 Glanz Sorbus aucuparia 0/1 Glanz Cornus sanguinea 0/5 Glanz Sambucus nigra 0/1 Glanz Trees Alnus glutinosa 1/1 Glanz Alnus glutinosa 3/3 Bairisch Kölldorf Acer campestre 0/1 Glanz Prunus avium 0/1 Glanz Fraxinus excelsior 0/1 Glanz Fraxinus excelsior 0/1 Bairisch Kölldorf Carpinus betulus 0/1 Bairisch Kölldorf Ailanthus altissima 0/6 Bairisch Kölldorf Quercus petraea 0/2 Bairisch Kölldorf www.ages.at Juglans regia 0/1 Bairisch Kölldorf 9 Results from transnational work – step 3: Environment analysis Reservoir host plants of FDp Results from Slovenia, Italy, Austria, Clematis vitalba Alnus glutinosa Ailanthus altissima picture: Follak/AGES Country Infection FDp- Country Infection FDp-Strains Country Infection FDp- rate Strain rate rate Strains SLO 60% FD-C SLO 90% FD-C, FD-D, SLO 5% FD-C, FD-70, ALY FD-D AT 60% FD-C AT 100% FD-C AT 0% IT 22% FD-C www.ages.at 10 Results from transnational work – step 3: Environment analysis Vectors Results from Austria, Switzerland, Slovenia, Italy, Spain 1. Scaphoideus titanus (AT, IT, SLO, CH – 0 to 8 % infection rates) 2. Orientus ishidae Country Infection rate FDp-Strain SLO 62% FD-C, FD-D, FD-70, ALY AT 47% FD-C CH 20% - IT 0 - 3. Oncopsis alni Country Infection rate FDp-Strains SLO 50% FD-C, FD-D, FD-70, ALY www.ages.at 11 Results from transnational work – step 3: Environment analysis Vectors Results from Austria 4. Phlogotettix cyclops 5. Psylla alni www.ages.at 12 Results from transnational work – step 3: Environment analysis Vectors What about Dictyophara europaea ? Country Numberof Number of caught FDp positive individuals Slovenia 2 0 Austria 2 0 Switzerland 0 0 Italy 5 0 Spain 16 0 • D. europaea could be rarley found in SLO, AT, CH and IT, frequently in Spain • D. europaea did not harbor FDp www.ages.at 13 Case investigations Results of molecular characterization of the FD strains (IT) Varieties 16S SecY Gene 2012 Gene Tru1I TaqI AluI TaqI Albarola FD-C c+d c c Albarola FD-C c - - Chardonnay FD-C - - - Chardonnay FD-C d d c Ciliegiolo FD-C d d c Pollera P. FD-C - - - Pollera P. FD-C d d c Pollera P. FD-C d d c Vermentino FD-C d d c Vermentino FD-C d d c -, amplification negative d, RFLP profile referable to strains belonging to FD-D c, RFLP profile referable to strains belonging to FD-C www.ages.at 14 Case investigations Distribution map of FDp strains hosted in grapevines www.ages.at 15 Austrian situation and results Team: Strauß, G., Altenburger, J., Berger N., Suarez-Mahecha, B. Reisenzein, H. 4 established focus and saftey zones First finding FD: 2009 Established populations of S. titanus www.ages.atFirst finding S. titanus : 2004 16 Potential new vectors of FDp Phlogotettix cyclops picture: Altenburger/AGES Psylla alni picture: Strauss/AGES www.ages.at 17 Preliminary results of strain typing Psylla allni FDp detection: real time PCR; (Christensen et al. 2004, Angelini et al. 2007) Strain typing: Direct generic PCR followed by nested generic PCR (16r758f/M23Sr primer); RFLP analysis with Taq I restriction enzyme Psylla alni Vitis v. Alnus incana. 16SrV-C 33% infection rate 16SrV-C 16SrV-D . Lanes: 100bp ladder, 1 to 9 Psylla alni ; 10 V. vinifera cv. Sämling 88 (isolate from Austria); 11 grapevine (FD 2 reference isolate from France); 12 Alnus incana (isolate form Austria) www.ages.at Reisenzein, H., 18.3.2014 18 Preliminary results of strain typing Phlogottetix cyclops FDp detection: real time PCR; (Christensen et al. 2004, Angelini et al. 2007) Strain typing: Direct generic PCR followed by nested generic PCR (16r758f/M23Sr primer); RFLP analysis with Taq I restriction enzyme Phlogottetix cyclops Vitis v. 16SrV-C 32% infection rate 16SrV-D . Lanes: 100bp ladder, 1 to 8 Phlogottetix clyclops ; 9 – V. vinifera cv. Sämling 88 (isolate from Austria); 10 grapevine (FD 2 reference isolate from France); www.ages.at Reisenzein, H., 18.3.2014 19 Hypothesis on transmission mechanisms and dynamics of FD 2011 2010 2012 2011 2011 2011 www.ages.at ARZ-GFD-Zagreb/March, 2013, Reisenzein 20 Hypothesis on transmission mechanisms and dynamics of FD Monophagous species are responsible for the spread of FDp strains within alder trees Oncopsis alni FD- C, D, 70 Psylla alni Natural epidemiological cylce FD- C, D, 70 FD-C Alder trees www.ages.at Hypothesis on transmission mechanisms and dynamics of FD O. ishidae Clematis plants FD- FD-C C, D, 70 Polyphagous species are Alder trees responsible for the spread P. cyclops FD- C, D, of FDp strains within 70 FD-C reservoir host plants Tree of heaven D. europaea FD- C, D, 70 FD-C www.ages.at Natural epidemiological clycles brancing to a cultivated plant Single affected Vitis plants O. ishidae plants P. cyclops Coincidental presence of S.titanus – a start off for an epidemic disease outbreak Natural host reservoir for FDp S. titanus Grapevines Grapevines Grapevines D. europaea Epidemic www.ages.at outbreak 23 Hypothesis on transmission mechanisms and dynamics of FD Infected P. cyclops on clematis plants 2011 All isolates (grape, 2010 2012 insects, alder, 2011 clematis) harbored 2011 FD-C 2011 strains Infected O. ishidae on alder trees www.ages.at ARZ-GFD-Zagreb/March, 2013, Reisenzein 24 www.ages.at www.ages.at Institute for Plant Health 25 Results from transmission trial with S. titanus , A. glutinosa as FD infection source and grapevine (cv. Scheurebe) Figure 1: Transmission trial set-up, Plexiglas cylinder with Alnus glutinosa twigs in water bottles and potted grapevines (cv. Scheurebe). www.ages.at 26 Results from transmission trial with S. titanus , A. glutinosa as FD infection source and grapevine (cv. Scheurebe) FDp status of potted tested number of FDp positive replicate grapevines (cv. S. titanus S. titanus Scheurebe) cylinder 1 3 1 adult negativ cylinder 2 16 0 negative cylinder 3 5 0 negativ cylinder 4 5 1 larva negativ cylinder 5 13 2 adults Positive zylinder 6 12 0 Negativ In total: 54 3 adults 2 positive grapevines 1 larva www.ages.at Institute for Plant Health 27.
Recommended publications
  • Jumping Mechanisms in Dictyopharid Planthoppers (Hemiptera
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 402-413 doi:10.1242/jeb.093476 RESEARCH ARTICLE Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae) Malcolm Burrows* ABSTRACT legs in the same plane underneath the body. A catapult-like The jumping performance of four species of hemipterans belonging to mechanism is used in which the trochanteral depressor muscles the family Dictyopharidae, from Europe, South Africa and Australia, contract slowly, energy is stored and is then released suddenly were analysed from high-speed images. The body shape in all was (Burrows, 2006a; Burrows, 2007b; Burrows, 2009). Despite these characterised by an elongated and tapering head that gave a important common features, each group has particular streamlined appearance. The body size ranged from 6 to 9 mm in specialisations of its own that define its jumping abilities. These length and from 6 to 23 mg in mass. The hind legs were 80–90% of include differences in body shape, in the length of the hind legs body length and 30–50% longer than the front legs, except in one and in the anatomy of the coxae. species in which the front legs were particularly large so that all legs Most leafhoppers have hind legs that are two to three times longer were of similar length. Jumping was propelled by rapid and than the other legs and are 90% of the body length (Burrows, simultaneous depression of the trochantera of both hind legs, powered 2007b). By contrast, froghoppers and planthoppers have hind legs by large muscles in the thorax, and was accompanied by extension of that are only 40–50% longer than the other legs and approximately the tibiae.
    [Show full text]
  • Host Plants and Seasonal Presence of Dictyophara Europaea in the Vineyard Agro-Ecosystem
    Bulletin of Insectology 61 (1): 199-200, 2008 ISSN 1721-8861 Host plants and seasonal presence of Dictyophara europaea in the vineyard agro-ecosystem Federico LESSIO, Alberto ALMA Di.Va.P.R.A., Entomologia e Zoologia applicate all’Ambiente “C. Vidano”, Facoltà di Agraria, Università di Torino, Italy Abstract Seasonal presence and host plants of Dictyophara europaea (L.), a candidate vector of phytoplasmas to grapevine, were studied in Piedmont during 2006 in different vine growing regions. Sampling consisted in net sweeping on different candidate host plants, and captures of adults with yellow sticky traps placed on grapevine. D. europaea nymphs and adults were collected on many weeds, showing how this planthopper should be considered a poly- phagous species, although Amaranthus retroflexus L. and Urtica dioica L. seem to be its preferred hosts, and may also bear phy- toplasmas. Larvae of Dryinidae were observed on almost 5% of collected individuals. The peak of adult presence was recorded in the middle of August, but few adults were captured on sticky traps placed on grapevine. Molecular analyses will be performed to detect the presence of phytoplasmas in captured individuals; however, given its scarce presence on grapevine, D. europaea does not seem capable to play a major role in the transmission of phytoplasmas to grapevine even if its vector ability were proved. Key words: Dictyophara europaea, vector, sweep net, Amaranthus retroflexus, grapevine. Introduction Holzinger et al. (2003). During 2007, collected nymphs and adults were put into a rearing cage made of plexi- The genus Dictyophara Germar is represented in Italy glas and insect-proof mesh, with a single plant of Ama- with four species: Dictyophara cyrnea Spinola (only in ranthus retroflexus L., to observe feeding behaviour and Sardinia), Dictyophara pannonica (Germar) (doubtful), ovoposition.
    [Show full text]
  • Dictyophara Europaea: Un Vecteur Potentiel De La Flavescence Dorée En Suisse?
    Protection des végétaux Dictyophara europaea: un vecteur potentiel de la flavescence dorée en Suisse? Christian LINDER1, Matteo CAVADINI2 et Santiago SCHAERER1 1Agroscope, 1260 Nyon 2ChanGins | Haute école spécialisée de viticulture et œnologie, 1260 Nyon Renseignements: Christian Linder, e-mail: [email protected], tél. +41 22 363 43 89, www.agroscope.ch Adulte du fulgore d’Europe Dictyophara europaea, hôte potentiel du phytoplasme de la flavescence dorée de la vigne. Introduction lidae), inféodée à la vigne (Belli et al. 2010). Cependant, de récentes observations ont montré que le fulgore La flavescence dorée (FD) est une importante maladie d’Europe, Dictyophara europaea L. (Homoptera: Dic- à phytoplasmes de la vigne causée par divers isolats tyopharidae), pouvait également abriter des isolats du appartenant au sous-groupes 16SrV-C ou -D (Filippin phytoplasme de la FD-C et ainsi éventuellement trans- et al. 2009). Les isolats de FD-D sont les plus répandus mettre ce type de FD dans les vignobles (Filippin et al. en Europe, tandis que ceux de FD-C n’affectent que des 2009). Ce fulgore univoltin de 9 à 13 mm est actif de régions limitées de France, d’Italie et des Balkans. Il est juin à octobre. Après l’éclosion de l’œuf, l’insecte passe admis que la FD est transmise par un vecteur unique, la par cinq stades nymphaux avec un pic d’activité des cicadelle Scaphoideus titanus Ball (Homoptera: Cicadel- adultes en août (Lessio et Alma 2008). De couleur verte, 216 Revue suisse Viticulture, Arboriculture, Horticulture | Vol. 46 (4): 216–219, 2014 Dictyophara europaea: un vecteur potentiel de la flavescence dorée en Suisse? | Protection des végétaux ou plus rarement rose, l’insecte se reconnaît aisément Le fulgore d’Europe, Dictyophara europaea, à la forme allongée de sa tête, qui peut constituer envi- est considéré depuis peu comme susceptible ron un cinquième du corps.
    [Show full text]
  • Identification and Ecology of Alternative Insect Vectors Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by AIR Universita degli studi di Milano OPEN Identifcation and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine Fabio Quaglino1, Francesco Sanna2, Abdelhameed Moussa 1, Monica Faccincani3, Alessandro Passera1, Paola Casati1, Piero Attilio Bianco1 & Nicola Mori 2* Bois noir, a disease of the grapevine yellows complex, is associated with ‘Candidatus Phytoplasma solani’ and transmitted to grapevines in open felds by the cixiids Hyalesthes obsoletus and Reptalus panzeri. In vine-growing areas where the population density of these vectors is low within the vineyard, the occurrence of bois noir implies the existence of alternative vectors. The aim of this study was to identify alternative vectors through screening of the Auchenorrhyncha community, phytoplasma typing by stamp gene sequence analyses, and transmission trials. During feld activities, conducted in Northern Italy in a vineyard where the bois noir incidence was extremely high, nine potential alternative insect vectors were identifed according to high abundance in the vineyard agro-ecosystem, high infection rate, and harbouring phytoplasma strains characterized by stamp gene sequence variants found also in symptomatic grapevines. Transmission trials coupled with molecular analyses showed that at least eight species (Aphrodes makarovi, Dicranotropis hamata, Dictyophara europaea, Euscelis incisus, Euscelidius variegatus, Laodelphax striatella, Philaenus spumarius, and Psammotettix alienus/confnis) are alternative vectors of ‘Candidatus Phytoplasma solani’ to grapevines. These novel fndings highlight that bois noir epidemiology in vineyard agro-ecosystems is more complex than previously known, opening up new perspectives in the disease management. Bois noir (BN), a disease of the grapevine yellows (GY) complex, causes serious crop losses in wine-making grape varieties in the Euro-Mediterranean area and in other vine-growing countries.
    [Show full text]
  • Final Grape Draft 0814
    DETECTION AND DIAGNOSIS OF RED LEAF DISEASES OF GRAPES (VITIS SPP) IN OKLAHOMA By SARA ELIZABETH WALLACE Bachelor of Science in Horticulture Oklahoma State University Stillwater, Oklahoma 2016 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2018 DETECTION AND DIAGNOSIS OF RED LEAF DISEASES OF GRAPES (VITIS SPP) IN OKLAHOMA Thesis Approved: Dr. Francisco Ochoa-Corona Thesis Adviser Dr. Eric Rebek Dr. Hassan Melouk ii ACKNOWLEDGEMENTS Thank you to Francisco Ochoa-Corona, for adopting me into his VirusChasers family, I have learned a lot, but more importantly, gained friends for life. Thank you for embracing my horticulture knowledge and allowing me to share plant and field experience. Thank you to Jen Olson for listening and offering me this project. It was great to work with you and Jana Slaughter in the PDIDL. Without your help and direction, I would not have achieved this degree. Thank you for your time and assistance with the multiple drafts. Thank you to Dr. Rebek and Dr. Melouk for being on my committee, for your advice, and thinking outside the box for this project. I would like to thank Dr. Astri Wayadande and Dr. Carla Garzon for the initial opportunity as a National Needs Fellow and for becoming part of the NIMFFAB family. I have gained a vast knowledge about biosecurity and an international awareness with guests, international scientists, and thanks to Dr. Kitty Cardwell, an internship with USDA APHIS. Thank you to Gaby Oquera-Tornkein who listened to a struggling student and pointed me in the right direction.
    [Show full text]
  • 'Candidatus Phytoplasma Solani' (Quaglino Et Al., 2013)
    ‘Candidatus Phytoplasma solani’ (Quaglino et al., 2013) Synonyms Phytoplasma solani Common Name(s) Disease: Bois noir, blackwood disease of grapevine, maize redness, stolbur Phytoplasma: CaPsol, maize redness phytoplasma, potato stolbur phytoplasma, stolbur phytoplasma, tomato stolbur phytoplasma Figure 1: A ‘dornfelder’ grape cultivar Type of Pest infected with ‘Candidatus Phytoplasma Phytoplasma solani’. Courtesy of Dr. Michael Maixner, Julius Kühn-Institut (JKI). Taxonomic Position Class: Mollicutes, Order: Acholeplasmatales, Family: Acholeplasmataceae Genus: ‘Candidatus Phytoplasma’ Reason for Inclusion in Manual OPIS A pest list, CAPS community suggestion, known host range and distribution have both expanded; 2016 AHP listing. Background Information Phytoplasmas, formerly known as mycoplasma-like organisms (MLOs), are pleomorphic, cell wall-less bacteria with small genomes (530 to 1350 kbp) of low G + C content (23-29%). They belong to the class Mollicutes and are the putative causal agents of yellows diseases that affect at least 1,000 plant species worldwide (McCoy et al., 1989; Seemüller et al., 2002). These minute, endocellular prokaryotes colonize the phloem of their infected plant hosts as well as various tissues and organs of their respective insect vectors. Phytoplasmas are transmitted to plants during feeding activity by their vectors, primarily leafhoppers, planthoppers, and psyllids (IRPCM, 2004; Weintraub and Beanland, 2006). Although phytoplasmas cannot be routinely grown by laboratory culture in cell free media, they may be observed in infected plant or insect tissues by use of electron microscopy or detected by molecular assays incorporating antibodies or nucleic acids. Since biological and phenotypic properties in pure culture are unavailable as aids in their identification, analysis of 16S rRNA genes has been adopted instead as the major basis for phytoplasma taxonomy.
    [Show full text]
  • The First Record of a Potential Pest Orientus Ishidae (Matsumura, 1902
    Journal of Plant Protection Research ISSN 1427-4345 ORIGINAL ARTICLE The fi rst record of a potential pest Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) in Poland Tomasz Klejdysz1*, Agnieszka Zwolińska2, Marcin Walczak3, Michał Kobiałka4 1 Department of Entomology, Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland 2 Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland 3 Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland 4 Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland Vol. 57, No. 2: 107–112, 2017 Abstract DOI: 10.1515/jppr-2017-0014 Th is study provides the fi rst data on the occurrence of the mosaic leafh opper Orientus ishidae (Matsumura, 1902) (Hemiptera: Cicadellidae) in Poland. Th is species is native to Received: November 16, 2016 Southeast Asia, adventive in Europe and feeds on cultivated plants. Orientus ishidae is Accepted: March 11, 2017 a well-known carrier of Grapevine fl avescence doree phytoplasma which causes the grape- vine yellows disease. Symptoms of phytoplasma diseases of grapevine include deforma- *Corresponding address: tions, leaf chlorosis and withering of plants. Th e appearance of this species in Poland might [email protected] be caused by observed climate variations and insuffi cient plant health controls in the inter- national trade of plants. Key words: biodiversity, fi rst record, leafh opper, Orientus ishidae, pest Introduction Th e number of alien leafh opper species has increased Guglielmino, 2005.
    [Show full text]
  • 46601932.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by OAR@UM BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2012) Vol. 5 : 57-72 A preliminary account of the Auchenorrhyncha of the Maltese Islands (Hemiptera) Vera D’URSO1 & David MIFSUD2 ABSTRACT. A total of 46 species of Auchenorrhyncha are reported from the Maltese Islands. They belong to the following families: Cixiidae (3 species), Delphacidae (7 species), Meenoplidae (1 species), Dictyopharidae (1 species), Tettigometridae (2 species), Issidae (2 species), Cicadidae (1 species), Aphrophoridae (2 species) and Cicadellidae (27 species). Since the Auchenorrhyncha fauna of Malta was never studied as such, 40 species reported in this work represent new records for this country and of these, Tamaricella complicata, an eastern Mediterranean species, is confirmed for the European territory. One species, Balclutha brevis is an established alien associated with the invasive Fontain Grass, Pennisetum setaceum. From a biogeographical perspective, the most interesting species are represented by Falcidius ebejeri which is endemic to Malta and Tachycixius remanei, a sub-endemic species so far known only from Italy and Malta. Three species recorded from Malta in the Fauna Europaea database were not found during the present study. KEY WORDS. Malta, Mediterranean, Planthoppers, Leafhoppers, new records. INTRODUCTION The Auchenorrhyncha is represented by a large group of plant sap feeding insects commonly referred to as leafhoppers, planthoppers, cicadas, etc. They occur in all terrestrial ecosystems where plants are present. Some species can transmit plant pathogens (viruses, bacteria and phytoplasmas) and this is often a problem if the host-plant happens to be a cultivated plant.
    [Show full text]
  • Auchenorrhyncha Monitoring and Proposal of Management Measures for Potential Pests on Peach Orchards in Beira Interior Region
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Auchenorrhyncha monitoring and proposal of management measures for potential pests on peach orchards in Beira Interior region Patrícia Monteiro Nascimento Mestrado em Biologia Humana e Ambiente Dissertação orientada por: Prof. Doutora Maria Teresa Rebelo (FCUL) 2020 Agradecimentos/ Acknowledgments ▪ à Professora Teresa Rebelo pela orientação, constante disponibilidade e boa disposição, por esclarecer as minhas dúvidas e por todas as sugestões, conselhos e revisões da tese; ▪ à Mestre Carina Neto por toda a ajuda na identificação dos insectos, pelos conselhos dados e por esclarecer as minhas dúvidas; ▪ a Joaquim Martins Duarte & Filhos, Lda por ter permitido a colocação das placas nos seus pomares para a amostragem e construção do presente trabalho; ▪ à Engenheira Anabela Barateiro pela recolha e envio de amostras, disponibilização de informação dos pomares e dados meteorológicos da região; ▪ ao Professor José Pereira Coutinho pelo envio de amostras e disponibilização de fotografias dos pomares e informação; ▪ à Unidade de Microscopia da FCUL que faz parte da Plataforma Portuguesa de Bioimaging (PPBI-POCI-01-0145-FEDER-022122) por ter disponibilizado o equipamento necessário para a aquisição de imagens dos insectos; ▪ à minha mãe, por toda a paciência, carinho, compreensão e apoio incondicional; ▪ às minhas amigas Inês Alves, Margarida Castelão e Catarina Ramos pela partilha da fase académica, pela companhia e pelas visitas, e à minha amiga Joana Cotrim por todo o apoio, paciência e companhia ao longo desta etapa. i Abstract The Auchenorrhyncha suborder comprises several species considered to be pests of economically important crops whether as a result of the direct damage caused by their feeding process or through some species ability to act as vectors for plant pathogens such as viruses and phytoplasmas.
    [Show full text]
  • Epidemiological Investigations and Molecular Characterization Of
    pathogens Article Epidemiological Investigations and Molecular Characterization of ‘Candidatus Phytoplasma solani’ in Grapevines, Weeds, Vectors and Putative Vectors in Western Sicily (Southern Italy) Gaetano Conigliaro 1 , Elham Jamshidi 2, Gabriella Lo Verde 1 , Patrizia Bella 1, Vincenzo Mondello 3 , Selene Giambra 1, Vera D’Urso 4, Haralabos Tsolakis 1 , Sergio Murolo 2 , Santella Burruano 1 and Gianfranco Romanazzi 2,* 1 Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze Ed. 4, 90128 Palermo, Italy; [email protected] (G.C.); [email protected] (G.L.V.); [email protected] (P.B.); [email protected] (S.G.); [email protected] (H.T.); [email protected] (S.B.) 2 Department of Agricultural, Food and Environmental Science, Marche Polytechnic University, 60131 Ancona, Italy; [email protected] (E.J.); [email protected] (S.M.) 3 Résistance Induite et Bioprotection des Plantes (RIBP), SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, EA 4707, BP 1039, CEDEX 2, 51687 Reims, France; [email protected] 4 Sezione di Biologia Animale, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Catania, via Androne 81, 95124 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-071-2204336 Received: 26 August 2020; Accepted: 2 November 2020; Published: 6 November 2020 Abstract: Bois noir is caused by ‘Candidatus Phytoplasma solani’, and it is one of the most important and widespread diseases in the Euro-Mediterranean region. There are complex interactions between phytoplasma and grapevines, weeds, and vectors. These ecological relationships can be tracked according to molecular epidemiology.
    [Show full text]
  • NOTES for AUTHORS Journals.Cambridge.Org/Ber Please See the Complete Version (“Instructions for Contributors”) at Journals.Cambridge.Org/Ber
    00074853_106-3_00074853_106-3 21/05/16 10:08 AM Page 2 Bulletin of Entomological Research NOTES FOR AUTHORS journals.cambridge.org/ber Please see the complete version (“Instructions for Contributors”) at journals.cambridge.org/ber Aims and Scope Styles of Paper be at the following minimum resolutions: Line artwork (black & Bulletin of Entomological Research publishes two types of paper: white), 1200dpi; Combination, i.e. line/tone (greyscale), 800dpi; Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global • Full research papers Black & White halftone (greyscale), 300dpi; and Colour halftone, knowledge of entomology through the generalisation of research findings rather than providing more • Reviews 300dpi. Comprehensive guidance on creating suitable electronic entomological exceptions. The Bulletin publishes high quality and original research papers, 'critiques' and review If the referees and editors judge a paper to be particularly figures is available at http://dx.sheridan.com/guidelines/digital_ articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, significant then it will be fast-tracked for publication. art.html where you will find extensive guidelines on preparing biological control, medicine, animal health and natural resource management. The scope of papers addresses the We also welcome ‘Letters to the Editor’ with comments on recently electronic figures. An online preflighting tool (http://dx.sheridan. biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular published papers. com/index.html) is also available where you can check if your emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of figures are suitable for reproduction.
    [Show full text]
  • Observations on the Genus Orientus (Rhynchota Cicadomorpha Cicadellidae) and Description of a New Species: O
    Marburger Entomologische Publikationen Band 3 Heft 3 pp. 99 - 110 20.1.2005 Observations on the genus Orientus (Rhynchota Cicadomorpha Cicadellidae) and description of a new species: O. amurensis n. sp. from Russia (Amur Region and Maritime Territory) and China (Liaoning Province) ADALGISA GUGLIELMINO Key words: Deltocephalinae, Athysanini, Taxonomy, Canada, Germany, Italy, Japan, Korean peninsular, Philippines, Russia, Switzerland, Taiwan, U.S.A.. Abstract: Orientus amurensis n. sp. from Russia (Amur Region and Maritime Territory) and China (Liaoning Province) is described and illustrated. O. amurensis n. sp. and O. ishidae (Matsumura) are distinguishable by the peculiar structure of their male (in details of genital plates, styles, aedeagus, processes of the pygofer) and female genitalia. O. ishidae is recorded for the first time in Italy. In the period 1998-2002, I received several specimens of a Cicadellid taxon collected by Dr. F. Poggi in Lombardia (Northern Italy) in Milano (residential area) and later in the environs of Lecco and Brescia mainly at light traps. This taxon was not present in the literature dealing with West Palearctic Cicadellidae. The use of OMAN's treatise of Nearctic Cicadellidae (1949), however, left no doubt about the fact, that this italian Cicadellid taxon belonged to the genus Orientus DeLong, 1938, whose - at that time - single species "Phlepsius ishidae MATSUMURA, 1902" was described from Japan (type locality: Hokkaido: Sapporo, in addition also Honshu: "Tokyo (?)") and subsequently recorded from Kyushu and Shikoku, Formosa, Korea, U.S.A. (New Jersey, New York, Maryland, Pennsylvania, Long Island, New Hampshire, District of Columbia, Ohio, Connecticut), Philippine Islands (see METCALF, 1967) and most recently from Eastern Russia (Maritime Territory: VILBASTE, 1968), Canada (Hamilton, 1983), Switzerland (GÜNTHART & MÜHLETHALER, 2002) and Germany (NICKEL & REMANE, 2003).
    [Show full text]