Distributed Generation: a Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Generation: a Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia energies Review Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia Jun Yin Lee 1,* , Renuga Verayiah 1, Kam Hoe Ong 1, Agileswari K. Ramasamy 1 and Marayati Binti Marsadek 2 1 Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] (R.V.); [email protected] (K.H.O.); [email protected] (A.K.R.) 2 Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] * Correspondence: [email protected] Received: 25 September 2020; Accepted: 20 November 2020; Published: 8 December 2020 Abstract: Electric supply is listed as one of the basic amenities of sustainable development in Malaysia. Under this key contributing factor, the sustainable development goal aims to ensure universal access to an affordable, clean, and reliable energy service. To support the generation capacity in years to come, distributed generation is conceptualized through stages upon its implementation in the power system network. However, the rapid establishment growth of distributed generation technology in Malaysia will invoke power quality problems in the current power system network. In order to prevent this, the current government is committed to embark on the development of renewable technologies with the assurance of maintaining the quality of power delivered to consumers. Therefore, this research paper will focus on the review of the energy prospect of both fossil fuel and renewable energy generation in Malaysia and other countries, followed by power quality issues and compensation device under a high renewable penetration distribution network. The issues and challenges of distributed generation are presented, with a comprehensive discussion and insightful recommendation on future work of the distributed generation. In accordance with the addressed highlights in this paper, it would serve as the criterion on upcoming revolution of distributed generation integrated along with the traditional network in Malaysia. Keywords: distribution network and distributed generation; fossil fuel and renewable generation; power quality disturbance and regulations; control strategies in PQ compensation device; challenges of DG in Malaysia; RE policy and initiatives 1. Introduction Relying on natural resources, such as fossil fuels, might not be a viable option in electricity generation [1,2]. The main reason for this is because fossil fuels will eventually face the brink of depletion in years to come. Under a large utilization on these resources, the contributing effects on the carbon footprint can be very alarming to the environment [3–5]. Therefore, alternative solutions, such as renewable sources (RESs), are introduced to support the surging demand of electricity and at the same time, to reduce the greenhouse gas effects caused by CO2 emission [6,7]. Cost reduction, bulking market demand, and an attractive rate of return on renewable technologies are also some of the reasons contributing to the subsequent factor upon realizing RE as one of the prominent generations in the grid [8,9]. In 2019, at least four countries (Denmark, Germany, Uruguay, and Iceland) met 30% of their electricity generation based on two prominent source of renewable energy, which are solar Energies 2020, 13, 6479; doi:10.3390/en13246479 www.mdpi.com/journal/energies EnergiesEnergies 20202020,, 1313,, 6479x FOR PEER REVIEW 22 ofof 4041 which are solar and wind [10]. By strategizing renewable policies and adapting to the trends of the andenergy wind market, [10]. Bythis strategizing would further renewable lead to policies an increase and adapting in high topenetration the trends ofof therenewable energy market,energy thistowards would electrifying further lead the toload an demand. increase inLooking high penetration at the current of renewable market in energyrenewable towards technology, electrifying solar theis list loaded as demand. one of the Looking cheapest at the renewable current marketsources in at renewable the moment. technology, This makes solar leading is listed countries as one of, such the cheapestas China renewable, venture sourcesfurther aton the the moment. feasibility This of makessolar leadingenergy countries,deployment such in asits China, grid venturesystem. furtherConsequently, on the feasibility solar electricity of solar could energy generate deployment at a lower in its gridcost compare system. Consequently,d to fossil fuels solar under electricity a high couldRE penetration generate atgrid a lower system cost [11] compared. to fossil fuels under a high RE penetration grid system [11]. Presently,Presently, the Malaysian government government has has looked looked into into the the promising promising growth growth of RE of REto sustain to sustain the thedemand demand of electricity of electricity in inthe the future future [12] [12. ].On On this this matter, matter, this this leads leads to to the the concept of integratingintegrating renewablerenewable energyenergy (RE)(RE) sourcessources withinwithin thethe distributiondistribution network.network. In this approach,approach, the powerpower losseslosses betweenbetween generation and load can bebe reduced,reduced, decreasingdecreasing fossilfossil fuelfuel consumptionconsumption economicallyeconomically inin additionaddition toto promoting promoting green green energy energy [8,13 ].[8,13] In consideration. In consideration of implementing of implementing the concept the of distributedconcept of generationdistributed (DG),generation policies (DG), have policies been introducedhave been introduced to encourage to encourage industries industries and public and in adoptingpublic in REadopting generation RE generation [14–16]. Numerous[14–16]. Numerous initiatives initiatives and incentives and incentives on installation on installation and operational and operational costs, pricingcosts, pricing tariffs, tariffs, tender program,tender program and research, and research grants have grants been have proposed been proposed to empower to empower the RE strategies the RE towardsstrategies sustainable towards sustainable development development goals (SDG) goals in the (SDG) energy in sectorthe energy [12,17 ,18sector]. This [12,17,18] substantially. This subsidizessubstantially the subsidize larger needss the of larger fossil fuelneeds generation, of fossil whichfuel generation can be lowered, which or compensatedcan be lowered by REor technologycompensated within by RE the technology distribution within network, the distribution which is shown network in Figure, which1. is As shown for now, in thereFigure are 1. manyAs for mininow, hydrothere powerare many generators, mini hydro roof-top, power and generators, smaller-scaled roof-top solar, and farms, smaller and-scaled biomass solar generators farms, and are interconnectedbiomass generators within are the interconnected distributed networkwithin the to distributed support the network load demand to support by utilizing the load a demand greener energyby utilizing to preserve a greener the energy environment to preserve [2,7,19 the,20 environment]. [2,7,19,20]. Distributed Generation (DG) Mini-Hydro Solar Farm Biomass Commercial Roof-Solar Source Residential Industrial FigureFigure 1.1.A A representation representation of distribution of distribution grid- interconnectedgrid- interconnected with renewable with renewable sources and sources distribution and loadsdistribution [21]. loads [21]. However,However, therethere areare limitationslimitations thatthat contributecontribute toto thethe ineineffectivenessffectiveness ofof DGDG inin providingproviding supportsupport toto the grid grid system system [22 [22––24]24].. Through Through integration integration of of RES RES into into the the grid grid system, system, power power quality quality issues issues are arepresumably presumably higher higher as ascompared compared to tothe the traditional traditional grid grid system. system. To To maintain maintain the the stability stability of thethe integratedintegrated grid system with RES, power quality standards are constantly revised to maintainmaintain the qualityquality ofof powerpower delivereddelivered toto thethe consumer.consumer. Both solar and wind renewables are an example of RES thatthat are heavily aaffectedffected by the changes within its surrounding surroundingss and environment environment,, which compromise thethe eeffectivenessffectiveness ofof thetheRE RE generation generation [ 24[24]].. From From an an inconsistent inconsistent generation generation of of RE, RE, this this would would lead lead to to a disorganizeda disorganized power power dispatch dispatch from from the the primary primary source source (fossil (fossil fuel fuel generation)generation) towardstowards thethe consumer loadsloads [[24,25]24,25].. Traditionally,Traditionally, whenwhen therethere isis aa highhigh penetrationpenetration inin RE,RE, curtailmentcurtailment wouldwould bebe thethe bestbest practicepractice toto limitlimit the generation on the RE supply to the grid [26,27] [26,27].. However, However, performing curtailment inin orderorder toto limitlimit thethe RERE generationgeneration isis notnot economicallyeconomically beneficialbeneficial asas itit willwill notnot fullyfully maximizemaximize thethe potentialpotential ofof thethe RERE generationgeneration [[23]23].. BesidesBesides this,this, withwith suddensudden unpredictableunpredictable intermittencyintermittency
Recommended publications
  • Power Quality Evaluation for Electrical Installation of Hospital Building
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 12, 2019 Power Quality Evaluation for Electrical Installation of Hospital Building Agus Jamal1, Sekarlita Gusfat Putri2, Anna Nur Nazilah Chamim3, Ramadoni Syahputra4 Department of Electrical Engineering, Faculty of Engineering Universitas Muhammadiyah Yogyakarta Yogyakarta, Indonesia Abstract—This paper presents improvements to the quality of Considering how vital electrical energy services are to power in hospital building installations using power capacitors. consumers, good quality electricity is needed [11]. There are Power quality in the distribution network is an important issue several methods to correct the voltage drop in a system, that must be considered in the electric power system. One namely by increasing the cross-section wire, changing the important variable that must be found in the quality of the power feeder section from one phase to a three-phase system, distribution system is the power factor. The power factor plays sending the load through a new feeder. The three methods an essential role in determining the efficiency of a distribution above show ineffectiveness both in terms of infrastructure and network. A good power factor will make the distribution system in terms of cost. Another technique that allows for more very efficient in using electricity. Hospital building installation is productive work is by using a Bank Capacitor [12]. one component in the distribution network that is very important to analyze. Nowadays, hospitals have a lot of computer-based The addition of capacitor banks can improve the power medical equipment. This medical equipment contains many factor, supply reactive power so that it can maximize the use electronic components that significantly affect the power factor of complex power, reduce voltage drops, avoid overloaded of the system.
    [Show full text]
  • Introduction to Power Quality
    CHAPTER 1 INTRODUCTION TO POWER QUALITY 1.1 INTRODUCTION This chapter reviews the power quality definition, standards, causes and effects of harmonic distortion in a power system. 1.2 DEFINITION OF ELECTRIC POWER QUALITY In recent years, there has been an increased emphasis and concern for the quality of power delivered to factories, commercial establishments, and residences. This is due to the increasing usage of harmonic-creating non linear loads such as adjustable-speed drives, switched mode power supplies, arc furnaces, electronic fluorescent lamp ballasts etc.[1]. Power quality loosely defined, as the study of powering and grounding electronic systems so as to maintain the integrity of the power supplied to the system. IEEE Standard 1159 defines power quality as [2]: The concept of powering and grounding sensitive equipment in a manner that is suitable for the operation of that equipment. In the IEEE 100 Authoritative Dictionary of IEEE Standard Terms, Power quality is defined as ([1], p. 855): The concept of powering and grounding electronic equipment in a manner that is suitable to the operation of that equipment and compatible with the premise wiring system and other connected equipment. Good power quality, however, is not easy to define because what is good power quality to a refrigerator motor may not be good enough for today‟s personal computers and other sensitive loads. 1.3 DESCRIPTIONS OF SOME POOR POWER QUALITY EVENTS The following are some examples and descriptions of poor power quality “events.” Fig. 1.1 Typical power disturbances [2]. ■ A voltage sag/dip is a brief decrease in the r.m.s line-voltage of 10 to 90 percent of the nominal line-voltage.
    [Show full text]
  • Cities, Climate Change and Multilevel Governance
    Cities, Climate Change and Multilevel Governance J. Corfee-Morlot, L. Kamal-Chaoui, M. G. Donovan, I. Cochran, A. Robert and P.J. Teasdale JEL Classification: Q51, Q54, Q56, Q58, R00. Please cite this paper as: Corfee-Morlot, Jan, Lamia Kamal-Chaoui, Michael G. Donovan, Ian Cochran, Alexis Robert and Pierre- Jonathan Teasdale (2009), “Cities, Climate Change and Multilevel Governance”, OECD Environmental Working Papers N° 14, 2009, OECD publishing, © OECD. OECD ENVIRONMENT WORKING PAPERS This series is designed to make available to a wider readership selected studies on environmental issues prepared for use within the OECD. Authorship is usually collective, but principal authors are named. The papers are generally available only in their original language English or French with a summary in the other if available. The opinions expressed in these papers are the sole responsibility of the author(s) and do not necessarily reflect those of the OECD or the governments of its member countries. Comment on the series is welcome, and should be sent to either [email protected] or the Environment Directorate, 2, rue André Pascal, 75775 PARIS CEDEX 16, France. ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ OECD Environment Working Papers are published on www.oecd.org/env/workingpapers ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ Applications for permission to reproduce or translate all or part of this material should be made to: OECD Publishing, [email protected] or by fax 33 1 45 24 99 30. Copyright OECD 2009 2 ABSTRACT Cities represent a challenge and an opportunity for climate change policy. As the hubs of economic activity, cities generate the bulk of GHG emissions and are thus important to mitigation strategies.
    [Show full text]
  • Distributed Wind Competitiveness Improvement Project
    Distributed Wind Competitiveness Improvement Project The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL). Manufacturers of small and medium wind turbines are awarded cost-shared subcontracts via a competitive process to optimize their designs, develop advanced manufacturing processes, and perform turbine testing. The goals of the CIP are to make wind energy cost competitive with other distributed generation technology and increase the number of wind turbine Photo from Northern Power Systems, NREL 36193 Increased Energy Reduced Hardware Production Costs Performance & Safety CIP component innovations and CIP manufacturing process CIP awardee Primus system optimization awardee innovation awardee Pika Energy Windpower of Lakewood, Colorado, achieved Bergey Windpower of Norman, of Westbrook, Maine, reduced Oklahoma, achieved a 110% blade costs by approximately for safety, function, performance, and durability— energy production increase for the 90% by developing an innovative to international standards on two of their turbine Excel 15 turbine over the Excel 10 tooling and cooling strategy to models. Northern Power Systems also recently turbine by increasing blade length produce blades using injection- and improving blade aerodynamics molded plastic. Two additional CIP awardees are currently and system controls. Through six funding cycles, DOE and NREL have awarded 28 subcontracts to 15 companies, totaling $6.3 million of investment
    [Show full text]
  • Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households Salman Kahrobaee University of Nebraska-Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Department of Electrical & Computer Engineering, Department of Electrical and Computer Engineering 2013 Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households Salman Kahrobaee University of Nebraska-Lincoln, [email protected] Sohrab Asgarpoor University of Nebraska-Lincoln, [email protected] Wei Qiao University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/electricalengineeringfacpub Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons Kahrobaee, Salman; Asgarpoor, Sohrab; and Qiao, Wei, "Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households" (2013). Faculty Publications from the Department of Electrical and Computer Engineering. 280. http://digitalcommons.unl.edu/electricalengineeringfacpub/280 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Department of Electrical and Computer Engineering by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. IEEE TRANSACTIONS ON SMART GRID, VOL. 4, NO. 4, DECEMBER 2013 1791 Optimum Sizing of Distributed Generation and Storage Capacity in Smart Households Salman Kahrobaee, Student Member, IEEE, Sohrab Asgarpoor, Senior Member, IEEE,and Wei Qiao, Senior Member, IEEE Abstract—In the near future, a smart grid will accommodate DI Decision interval in h. customers who are prepared to invest in generation-battery sys- tems and employ energy management systems in order to cut down Time-step of the simulation in h. on their electricity bills.
    [Show full text]
  • Microgen & DG Report June 2020
    Small Distribution-Connected Generation Resources in Alberta Within Alberta, electric distribution systems are operated by utility companies and are the portion of the electric system that operates at 25 kilovolts or less. These distribution systems are used to deliver electricity from the Alberta interconnected electric system to an end-use customer. A Distributed Energy Resource is any resource that is connected to and can supply energy to an electric distribution system. This includes distribution-connected generation resources and energy storage. This report focuses on distribution-connected generation resources, which are typically connected to a distribution system at customer locations. Distribution-connected generation, if it qualifies, can be designated as micro-generation. For the purposes of this report, resources that are not designated as micro-generation will be referred to simply as distributed generation. This report has a section containing a brief description of each class of generation. In addition, there is data on the number of sites and total installed capacity broken out by energy source. Micro-Generation Distributed generation may qualify as micro-generation under the Micro-generation Regulation. To qualify as micro-generation, a generating unit must use renewable or alternative energy sources, be intended to offset consumer load, and have a nameplate capacity that does not exceed 5,000 kW. Electricity may be generated from solar, wind, hydro, fuel cells or biomass. Other sources may be permitted if they have current EcoLogo certification or their greenhouse gas intensity is lower then the regulated limit. Micro-generators producing electricity in excess of on-site load receive credits for what they feed to the electricity grid.
    [Show full text]
  • ENA Customer Guide to Electricity Supply
    ENA Customer Guide to Electricity Supply Energy Networks Association Limited ENA Customer Guide to Electricity Supply August 2008 DISCLAIMER This document refers to various standards, guidelines, calculations, legal requirements, technical details and other information. Over time, changes in Australian Standards, industry standards and legislative requirements, as well as technological advances and other factors relevant to the information contained in this document may affect the accuracy of the information contained in this document. Accordingly, caution should be exercised in relation to the use of the information in this document. The Energy Networks Association (ENA) accepts no responsibility for the accuracy of any information contained in this document or the consequences of any person relying on such information. Correspondence should be addressed to: The Chief Executive Energy Networks Association Level 3, 40 Blackall Street Barton ACT 2600 E: [email protected] T: +61 2 6272 1555 W: www.ena.asn.au Copyright © Energy Networks Association 2008 All rights are reserved. No part of this work may be reproduced or copied in any form or by any means, electronic or mechanical, including photocopying, without the written permission of the Association. Published by the Energy Networks Association, Level 3, 40 Blackall Street, Barton, ACT 2600. Contents THE PURPOSE OF THIS GUIDE......................................................................................... 1 INTRODUCTION ................................................................................................................
    [Show full text]
  • Power Quality Standards
    Pacific Gas and Electric Company Power Quality Standards IEEE Standard 141-1993, Recommended Practice for Electric Power Distribution for Industrial Plants, aka the Red Book. A thorough analysis of basic electrical-system considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. IEEE Standard 142-1991, Recommended Practice for Grounding of Industrial and Commercial Power Systems, aka the Green Book. Presents a thorough investigation of the problems of grounding and the methods for solving these problems. There is a separate chapter for grounding sensitive equipment. IEEE Standard 242-1986, Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems, aka the Buff Book. Deals with the proper selection, application, and coordination of the components which constitute system protection for industrial plants and commercial buildings. IEEE Standard 446-1987, Recommended Practice for Emergency and Standby Power Systems for Industrial and Commercial Applications, aka the Orange Book. Recommended engineering practices for the selection and application of emergency and standby power systems. It provides facility designers, operators and owners with guidelines for assuring uninterrupted power, virtually free of frequency excursions and voltage dips, surges, and transients. IEEE Standard 493-1997, Recommended Practice for Design of Reliable Industrial and Commercial Power Systems, aka the Gold Book. The fundamentals of reliability analysis as it applies to the planning and design of industrial and commercial electric power distribution systems are presented.
    [Show full text]
  • Distributed Generation: a Brighter Future?
    DISTRIBUTED GENERATION: A BRIGHTER FUTURE? Sponsored by DISTRIBUTED GENERATION A BRIGHTER FUTURE? CONTENTS 2 About this report 3 Executive summary 5 Part one: The shift to decentralised power production 9 Part two: Early movers 14 Part three: Looking ahead 17 Conclusion © The Economist Intelligence Unit Limited 2018 1 DISTRIBUTED GENERATION A BRIGHTER FUTURE? ABOUT THIS REPORT Distributed generation: a brighter future? is an Economist Intelligence Unit report, sponsored by E.ON. In this paper, The Economist Intelligence Unit examines the growth in distributed generation, as an increasing number of UK businesses are meeting a greater proportion of their energy needs through electricity generated themselves, on-site. This report seeks to examine the impact that distributed generation could have on UK businesses. To do so, we surveyed 450 senior executives with familiarity of their companies’ energy strategies in April-May 2018. The survey focused exclusively on executives from energy-intensive industries: manufacturing, transport and logistics, hospitality and retail. Half of the respondents are either members of their companies’ boards or hold C-level positions; the remainder are other senior managers and executives. All are from UK businesses with annual revenue exceeding £100m. The Economist Intelligence Unit supplemented the survey results with in-depth interviews with executives and industry experts. We would like to thank all survey respondents, as well as the following executives (listed alphabetically by company), for their time and insights: l Richard Carter, head of finance and sustainability, Adnams l Ilesh Patel, partner—energy and resources, Baringa l Simon Virley, partner and UK head of power and natural resources, KPMG l Caroline Hill, head of sustainability and public affairs, Landsec l Tom Byrne, sustainability manager, Landsec l Stuart Ravens, principal research analyst, Navigant Research l James Pitcher, director of sustainability, Whitbread This paper was written by Jessica Twentyman and edited by Jeremy Kingsley.
    [Show full text]
  • Policy Brief
    Policy brief Energy Transition in Europe’s Power House. Alleingang, avant-garde or blackout? Issue 2012/03 • October 2012 by Thomas Sattich he transformation of Germany’s energy Tsector will further exacerbate current The German government proclaimed its “revolution of Germany’s network fluctuations and intensify the need energy sector” (Angela Merkel) without consulting its neighbours. The neglect of Europe’s Internal Electricity Market is one of the most for modifications in Europe’s power system. surprising aspects of the German Energiewende (energy transition) Cross-border power transfers will have project, which aims at substantially increasing the share of rene- to increase in order to overcome national wables in the German energy mix while phasing out nuclear power. limitations for absorbing large volumes In Europe, national power systems do not function in isolation from of intermittent renewables like wind and one another; cross-border power flows are daily routine. In addi- solar power. In order to establish such an tion, the Internal Electricity Market helped with the first steps of infrastructure on a European scale, the energy Germany’s energy transition: interconnections with neighbouring transition needs to be guided by an economic countries not only enabled wind energy surpluses to be exported, approach designed to prevent further fractures but also permitted electricity imports to bridge the supply gap after in the Internal Electricity Market. Moreover, the rapid phase-out of nuclear plants in the wake of the Fukushi- constructive negotiations with neighbouring ma disaster. Increasing the input of renewables therefore not only countries on market designs and price subverts the hierarchical top-down logic of electricity distribution signals will be important preconditions for a on the national level, but has implications for the supranational di- successful energy transition in Europe.
    [Show full text]
  • NV Energy Reliability and Power Quality Brochure
    CUSTOMER SERVICE Reliability and Power Quality How To Safeguard The Life And Reliable Operation Of Your Home Appliances And Business Equipment Electricity powers our everyday lives. From specialized care equipment such as dialysis machines to everyday heating and cooling devices like air conditioners or furnaces and appliances, the impact of a power interruption on consumers can be significant. NV Energy places the highest priority on providing safe and reliable electric energy to all customers. However, there are situations where disturbances beyond human control cause momentary disruptions or other power quality issues. This Power Quality brochure outlines the power disturbances that happen in residential, industrial and commercial customers and how to protect against them. What Are The Different Types Of How Does NV Energy Deliver Electricity? Power Disturbances I Can Experience? NV Energy operates an extensive, sophisticated generation, transmission and distribution power management system that supplies most of southern and northern Nevada with There are several types of power disturbances that may affect your home or business. These electricity. This system delivers a reliable supply of power that satisfies national voltage may or may not impact you, depending on the magnitude, frequency and duration of the standards. Occasionally however, electric systems experience voltage disturbances from event, as well as the sensitivity of your electrical appliance or equipment. natural or man-made causes (e.g., lightning, wind, cars hitting power poles, etc.) that are impossible to predict or control. These disturbances can interfere with your appliances and If you have ever experienced any of the following, you may have a power quality concern: even damage some of your more sensitive equipment such as computers.
    [Show full text]
  • The Smart Grid
    Privacy in the Smart Grid ISED 2018 Alfredo Rial [email protected] Table of Contents • Challenges of the Current Grid • The Smart Grid • Privacy Problems • Possible Privacy-Friendly Solutions Current Challenges in the Grid Integration of renewable sources of energy Integration of renewable sources of energy: • Solar panels • Wind mills From centralized to distributed power generation: • Transmission and distribution borders blur • Requires bidirectional energy flows • More resilience to attacks against plants • Help meeting demand grow Improving the load factor • Short peaks caused, e.g., by heating and air conditioning • Costly gas turbines employed to match peak loads • They can be started and shut down fast • Peak power plants only on several hours a day • Electricity prices are incremented Incorporation of Demand Response To reduce the load, customers are requested to reduce their load. Currently, this is mainly done with large industrial customers. Load Control Switch Integration of Advance Electricity Storage • Renewable sources are variable, so electricity generation can be higher than demand. • Electricity is stored to be used during peak demand periods • Different methods (not cheap): • Batteries. • Pumped water • Electric vehicles • Hydrogen • Compressed air Obsolescence • Aging Equipment • Obsolete layout – insufficient facilities • Outdated Engineering Deregulation of the Electricity Market Operating a system using concepts and procedures that worked in vertically integrated industry exacerbate the problem under a deregulated
    [Show full text]