XLH Point-Of-Care Resource: Diagnosis & Treatment

Total Page:16

File Type:pdf, Size:1020Kb

XLH Point-Of-Care Resource: Diagnosis & Treatment XLH Point-of-Care Resource: Diagnosis & Treatment Overview X-linked hypophosphatemia (XLH) is a disease caused by inactivating mutations in the PHEX gene, which functions to regulate phosphate reabsorption. It is inherited in an X-linked dominant manner and is the most prevalent form of heritable rickets, estimated to occur in 1/20,000 live births. Table 1: Clinical Features of XLH Children and Adolescents Adults Evidence of rickets: wide-based gate, coxa vara, Osteomalacia: defective mineralization, fractures/ genu varum pseudofractures, bone pain Growth retardation Enthesopathy Dental abnormalities Degenerative osteoarthropathy Craniosynostosis and/or intracranial hypertension Spinal stenosis Hearing loss, tinnitus, vertigo Dental abscesses Differential Diagnosis of Adult XLH Rheumatologic/ Hereditary Disease Other Medical Conditions Orthopedic • Autosomal dominant • Osteoporosis, osteopenia • Hypophosphatasia, renal hypophosphatemic rickets (ADHR) • Ankylosing spondylitis insufficiency, liver disease, primary, • Autosomal recessive • Rheumatoid arthritis hypoparathyroidism hypophosphatemic rickets (ARHR) • Osteoarthritis • Renal Fanconi syndrome • Hereditary hypophosphatemic • Systemic lupus erthematosus • Vitamin D deficiency rickets with hypercalciurua • Diffuse idiopathic skeletal (HHRH) hyperostosis • Skeletal dysplasia • Blount disease • Fibrous dysplasia of bones • Tumor-induced osteomalacia (TIO) Measure: Age-Specific Phosphate Reference Mean Upper 97.5% Lower 2.5% Serum: fasting phosphate, calcium, alkaline 7.0 phosphatase, parathyroid hormone (PTH), 25(OH) vitamin D, 1,25(OH)2 vitamin D, and 6.0 creatinine 5.0 Urine: calcium, creatininecalculate the tubular maximum reabsorption of phosphate per 4.0 glomerular filtration rate (TmP/GFR) 3.0 Serum fibroblast growth factor 23 (FGF23) Serum Phos (mg/dL) 2.0 0 5 10 15 20 Diagnostic Assessment of XLH Diagnostic confirmation of XLH by genetic analysis of the PHEX gene Age (Years) © 2021 PRIME Education, LLC. All Rights Reserved. www.primeinc.org X-Linked Hypophosphatemia (XLH) Point-of-Care Resource: Conventional Therapy Overview Early treatment in children promotes growth, reduces bone pain, progressively corrects leg deformities, and improves dental health. In symptomatic adults, therapy reduces osteomalacia and improves oral health. Symptomatic Treatment Treatment Monitoring Nephrocalcinosisdecrease or Combination therapy (children): discontinue phosphate and/or calcitriol Serum and urinary calcium; 3 Phosphorus: 20-60 mg/kg serum phosphate – divided in 4-6 doses daily Hypercalcemia/ 3 Calcitriol: 20-30 ng/kg hypercalciuriadiscontinue – divided in 2 doses daily 25-OHD Combination therapy (Adults)*: Decrease phosphate and/or 3 Phosphorus: 20-40 mg/kg increase calcitriol Increased PTH – divided in 4-6 doses daily 3 Calcitriol: 20-40 ng/kg Ensure adequate dietary Ca2+ – divided in 2 doses daily Renal ultrasound *DO NOT treat to serum phosphorous levels, treat to Bow defects, torsion, epiphyseal X-ray Conventional Medical Therapy symptoms Skeletal outcomes Alkaline phosphatase: balance phosphate and/or calcitriol Dental examinations/TX Burosumab Overview Disease-modifying therapy indicated for XLH in adult and pediatric patients 6 months of age and older. Burosumab is a human monoclonal antibody that binds to and inhibits excess circulating levels of fibroblast growth factor 23 (FGF23), restoring renal phosphate reabsorption and increasing the serum concentration of 1,25 dihydroxy vitamin D. Disease-Modifying Treatment Treatment Monitoring: Children and Adolescents: 3 Fasting serum phosphate levels and TmP/GFR • Radiographic evidence of overt bone disease – Titration period: 7–11 days after last injection to and refractory or inability to adhere to detect hyperphosphataemia conventional therapy – Every 4 weeks during the following 3 months and 3 Burosumab: 0.8mg/kg SC Q2W thereafter as appropriate – Titrate every four weeks to raise fasting serum – Once stable, assess directly before injections to phosphate levels within age-specific reference detect under dosing range (maximum dose of 90 mg) Exclusion Criteria: Adults: x Baseline phosphate levels within normal age- Burosumab Therapy Burosumab • Osteomalacia-related bone/ joint pain or fractures/ pseudofractures limiting daily activities; appropriate reference range and refractory to conventional therapy x Concurrent conventional treatment 3 Burosumab: 1.0 mg/kg SC Q4W x Severe renal impairment – maximum dose 90 mg © 2021 PRIME Education, LLC. All Rights Reserved. www.primeinc.org References 1. Alizadeh Naderi AS, Reilly RF. Nat Rev Nephrol. 2010;6(11):657-665. 2. Carpenter TO, et al. J Bone Miner Res. 2011;26(7):1381-1388. 3. Feng J, et al. Endocr J. 2017 Jul 28;64(7):675-683. 4. Florenzano P, et al. Bone Reports. 2017;7:90-97. 5. Francis F, et al. Nat Genet. 1995;11(2):130-136. 6. Haffner D, et al. Nat Rev Nephrol. 2019;15(7):435-455. 7. Lambert A-S, et al. Joint Bone Spine. 2019;86(6):731-738. 8. Lockitch G, et al. Clin Chem. 1988;34(8):1622-1625. 9. Crysvita [package insert]. Ultragenyx Pharmaceutical; June 2020. Available at: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=6f5f3556-3197-477a-993c-96b2c29a91ac#S1 © 2021 PRIME Education, LLC. All Rights Reserved. www.primeinc.org.
Recommended publications
  • Genu Varum and Genu Valgum Genu Varum and Genu Valgum
    Common Pediatric Lower Limb Disorders Dr.Kholoud Al-Zain Assistant Professor Consultant, Pediatric Orthopedic Surgeon Nov- 2018 Acknowledgement: Dr.Abdalmonem Alsiddiky Dr.Khalid Bakarman Prof. M. Zamzam Topics to Cover 1. In-toeing 2. Genu (varus & valgus), & proximal tibia vara 3. Club foot 4. L.L deformities in C.P patients 5. Limping & leg length inequality 6. Leg aches 1) Intoeing Intoeing- Evaluation • Detailed history – Onset, who noticed it, progression – Fall a lot – How sits on the ground • Screening examination (head to toe) • Pathology at the level of: – Femoral anteversion – Tibial torsion – Forefoot adduction – Wandering big toe Intoeing- Asses rotational profile Pathology Level Special Test • Femoral anteversion • Hips rotational profile: – Supine – Prone • Tibial torsion • Inter-malleolus axis: – Supine – Prone • Foot thigh axis • Forefoot adduction • Heel bisector line • Wandering big toe Intoeing- Special Test Foot Propagation Angle → normal is (-10°) to (+15°) Intoeing- Femoral Anteversion Hips rotational profile, supine → IR/ER normal = 40-45/45-50° Intoeing- Tibial Torsion Inter-malleolus axis Supine position Sitting position Intoeing- Tibial Torsion Foot Thigh Axis → normal (0°) to (-10°) Intoeing- Forefoot Adduction Heel bisector line → normal along 2 toe Intoeing- Adducted Big Toe Intoeing- Treatment • Establish correct diagnosis • Parents education • Annual clinic F/U → asses degree of deformity • Femoral anti-version → sit cross legged • Tibial torsion → spontaneous improvement • Forefoot adduction → anti-version
    [Show full text]
  • Peds Ortho: What Is Normal, What Is Not, and When to Refer
    Peds Ortho: What is normal, what is not, and when to refer Future of Pedatrics June 10, 2015 Matthew E. Oetgen Benjamin D. Martin Division of Orthopaedic Surgery AGENDA • Definitions • Lower Extremity Deformity • Spinal Alignment • Back Pain LOWER EXTREMITY ALIGNMENT DEFINITIONS coxa = hip genu = knee cubitus = elbow pes = foot varus valgus “bow-legged” “knock-knee” apex away from midline apex toward midline normal varus hip (coxa vara) varus humerus valgus ankle valgus hip (coxa valga) Genu varum (bow-legged) Genu valgum (knock knee) bow legs and in toeing often together Normal Limb alignment NORMAL < 2 yo physiologic = reassurance, reevaluate @ 2 yo Bow legged 7° knock knee normal Knock knee physiologic = reassurance, reevaluate in future 4 yo abnormal 10 13 yo abnormal + pain 11 Follow-up is essential! 12 Intoeing 1. Femoral anteversion 2. Tibial torsion 3. Metatarsus adductus MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE! BRACES ARE HISTORY! Femoral Anteversion “W” sitters Internal rotation >> External rotation knee caps point in MOST LIKELY PHYSIOLOGIC AND MAY RESOLVE! Internal Tibial Torsion Thigh foot angle MOST LIKELY PHYSIOLOGIC AND WILL RESOLVE BY SCHOOL AGE Foot is rotated inward Internal Tibial Torsion (Fuchs 1996) Metatarsus Adductus • Flexible = correctible • Observe vs. casting CURVED LATERAL BORDER toes point in NOT TO BE CONFUSED WITH… Clubfoot talipes equinovarus adductus internal varus rotation equinus CAN’T DORSIFLEX cavus Clubfoot START19 CASTING JUST AFTER BIRTH Calcaneovalgus Foot • Intrauterine positioning • Resolve
    [Show full text]
  • 5/19/2016 18
    5/19/2016 1 Pediatric Orthopaedics for Primary Care Providers 22 Disclosure Statement No conflicts related to this presentation 33 44 Goals 1. Discuss some common pediatric problems seen in the clinic 2. Examination techniques 3. Basics of treatment 55 Overview 1. DDH 2. Clubfoot 3. Gait abnormalities 4. Shape abnormalities 5. Fracture topics 6. Hip and knee problems 7. Tumors 66 Developmental Dysplasia of the Hip Spectrum of abnormal development of the hip May be congenital or develop during infancy or childhood Incidence ~ 1:1000 of infants 77 Risk Factors 1st born Girls Family history Breech Metatarsus adductus/CMT Joint laxity 88 Diagnosis Clinical examination (at birth and subsequent well-baby examinations) Clunks signify dislocating hip (Barlow sign) or relocating hip (Ortolani sign) Sustained dislocation may demonstrate decreased hip abduction or leg length discrepancy (unilateral) 9 10 1 11 5/19/2016 Sustained dislocation may demonstrate decreased hip abduction or leg length discrepancy (unilateral) 99 Bilateral DDH 1010 Ortolani Maneuver 1111 Barlow Maneuver 1212 Screening All newborns should have examination of the hip as part of routine exam Imaging is not recommended on a routine basis At risk babies should have ultrasound examination at 4-6 weeks of age (+/- AP pelvis radiograph at 6 months of age) 1313 Treatment Early identification Pavlik harness 1414 Try to prevent situations like these 1515 Dysplasia Unfortunately, cases like these are going to be missed 1616 Congenital Talipes Equinovarus Multifactorial etiology Incidence
    [Show full text]
  • Natural History of 39 Patients with Achondroplasia
    ORIGINAL ARTICLE Natural history of 39 patients with Achondroplasia Jose Ricardo Magliocco Ceroni,I,* Diogo Cordeiro de Queiroz Soares,I Larissa de Ca´ssia Testai,II Rachel Sayuri Honjo Kawahira,I Guilherme Lopes Yamamoto,I Sofia Mizuho Miura Sugayama,I Luiz Antonio Nunes de Oliveira,III Debora Romeo Bertola,I Chong Ae KimI I Unidade de Genetica, Instituto da Crianca (ICR), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. II Centro de Pesquisas sobre o Genoma Humano e Celulas-Tronco (CEGH-CEL), Instituto de Biociencias (IB), Universidade de Sao Paulo, Sao Paulo, SP, BR. III Unidade de Radiologia, Instituto da Crianca (ICR), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR. Ceroni JR, Soares DC, Testai LC, Kawahira RS, Yamamoto GL, Sugayama SM, et al. Natural history of 39 patients with Achondroplasia. Clinics. 2018;73:e324 *Corresponding author. E-mail: [email protected] OBJECTIVES: To characterize the natural history of 39 achondroplastic patients diagnosed by clinical, radiological and molecular assessments. METHODS: Observational and retrospective study of 39 patients who were attended at a public tertiary level hospital between 1995 and 2016. RESULTS: Diagnosis was made prenatally in 11 patients, at birth in 9 patients and within the first year of life in 13 patients. The most prevalent clinical findings were short stature, high forehead, trident hands, genu varum and macrocephaly. The most prevalent radiographic findings were rhizomelic shortening of the long bones and narrowing of the interpediculate distance of the caudal spine. There was motor developmental delay in 18 patients and speech delay in 16 patients.
    [Show full text]
  • Leri-Weill Dyschondrosteosis Syndrome: Analysis Via 3DCT Scan
    medicines Case Report Leri-Weill Dyschondrosteosis Syndrome: Analysis via 3DCT Scan Ali Al Kaissi 1,2,* , Mohammad Shboul 3, Vladimir Kenis 4 , Franz Grill 2, Rudolf Ganger 2 and Susanne Gerit Kircher 5 1 Ludwig Boltzmann Institute of Osteology, at the Hanusch Hospital of WGKK and, AUVA Trauma Centre Meidling, First Medical Department, Hanusch Hospital, Vienna 1140, Austria 2 Paediatric department, Orthopaedic Hospital of Speising, Vienna 1130, Austria; [email protected] (F.G.); [email protected] (R.G.) 3 Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 4 Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Parkovaya str., 64–68, Pushkin, Saint Petersburg, Russia; [email protected] 5 Department of Medical Chemistry, Medical University of Vienna, Vienna 1090, Austria; [email protected] * Correspondence: [email protected]; Tel./Fax: +43-180-182-1260 Received: 17 May 2019; Accepted: 27 May 2019; Published: 29 May 2019 Abstract: Background: Leri-Weill dyschondrosteosis (LWD) is a pseudoautosomal form of skeletal dysplasia, characterized by abnormal craniofacial phenotype, short stature, and mesomelia of the upper and lower limbs. Methods: We describe two female patients with LWD. Their prime clinical complaints were severe bouts of migraine and antalgic gait. Results: Interestingly, via a 3D reconstruction CT scan we encountered several major anomalies. Notable features of craniosynostosis through premature fusion of the squamosal sutures and partial closure of the coronal sutures were the reason behind the development of abnormal craniofacial contour. A 3D reconstruction CT scan showed apparent bulging of the clavarium through the partially synostosed coronal and totally synostosed squamosal sutures.
    [Show full text]
  • Crystal Deposition in Hypophosphatasia: a Reappraisal
    Ann Rheum Dis: first published as 10.1136/ard.48.7.571 on 1 July 1989. Downloaded from Annals of the Rheumatic Diseases 1989; 48: 571-576 Crystal deposition in hypophosphatasia: a reappraisal ALEXIS J CHUCK,' MARTIN G PATTRICK,' EDITH HAMILTON,' ROBIN WILSON,2 AND MICHAEL DOHERTY' From the Departments of 'Rheumatology and 2Radiology, City Hospital, Nottingham SUMMARY Six subjects (three female, three male; age range 38-85 years) with adult onset hypophosphatasia are described. Three presented atypically with calcific periarthritis (due to apatite) in the absence of osteopenia; two had classical presentation with osteopenic fracture; and one was the asymptomatic father of one of the patients with calcific periarthritis. All three subjects over age 70 had isolated polyarticular chondrocalcinosis due to calcium pyrophosphate dihydrate crystal deposition; four of the six had spinal hyperostosis, extensive in two (Forestier's disease). The apparent paradoxical association of hypophosphatasia with calcific periarthritis and spinal hyperostosis is discussed in relation to the known effects of inorganic pyrophosphate on apatite crystal nucleation and growth. Hypophosphatasia is a rare inherited disorder char- PPi ionic product, predisposing to enhanced CPPD acterised by low serum levels of alkaline phos- crystal deposition in cartilage. copyright. phatase, raised urinary phosphoethanolamine Paradoxical presentation with calcific peri- excretion, and increased serum and urinary con- arthritis-that is, excess apatite, in three adults with centrations
    [Show full text]
  • Renal Failure with Skeletal Abnormalities
    Renalfailure with skeletal abnormalities 569 Postgrad Med J: first published as 10.1136/pgmj.72.851.569 on 1 September 1996. Downloaded from Renal failure with skeletal abnormalities Randeep Guleria, Shaji Kumar, Sriram Agarwal, Lakshmi Prasad A 40-year-old man presented with complaints of persistent vomiting for six months, periorbital puffiness for four months, ankle swelling for one month and chest pain for three days. He was apparently asymptomatic prior to the onset of these symptoms. He had experienced persistent vomiting two to three times a day, which was non-projectile and non-bilious with no constant relation to meals. He had noticed increasing puffiness of face, maximally in the morning for the past four months. One month prior to admission he had noticed swelling around his ankles. Along with these complaints he also noticed a decrease in his urine output. The patient had been diagnosed as suffering from chronic renal failure due to chronic glomerulonephritis at another hospital and had received peritoneal dialysis. He had then been referred to this hospital for further management. Examination revealed a pale man of average build with anasarca. He had a pulse rate of 112 beats/min, blood pressure of 180/115 mmHg, respiratory rate of 20 breaths/min and a temperature of 99'F. His jugular venous pressure was 11 cm above the sternal angle with normal wave patterns. The thumb and index nails were hypoplastic as were all the toe nails. Other findings included fixed flexion deformity of bilateral elbows, excessive lumbar lardosis with high iliac crests, genu varum and bilateral absent patellae.
    [Show full text]
  • Cortical Hyperostosis (Caffey's Syndrome)* by E
    Br J Vener Dis: first published as 10.1136/sti.27.4.194 on 1 December 1951. Downloaded from A CASE FOR DIAGNOSIS WITH A NOTE ON INFANTILE CORTICAL HYPEROSTOSIS (CAFFEY'S SYNDROME)* BY E. M. C. DUNLOP - From the Whitechapel Clinic, London copyright. 1@>v;iil'ill,',ll!X'. 1.~~~~~~~~~~~W http://sti.bmj.com/ :>1 , ' ..~~~~~~~A on October 2, 2021 by guest. Protected I t.KAt} alli)\N 11t' |nt 1)I Ii II CI IK Br J Vener Dis: first published as 10.1136/sti.27.4.194 on 1 December 1951. Downloaded from INFANTILE CORTICAL HYPEROSTOSIS 195 copyright. http://sti.bmj.com/ on October 2, 2021 by guest. Protected ;- I FIG. 2.-,X-ray photograph of legs, September 12, 1949, showing periosteal reaction at 8 weeks. Br J Vener Dis: first published as 10.1136/sti.27.4.194 on 1 December 1951. Downloaded from 196 BRITISH JOURNAL OF VENEREAL DISEASES SERUM BABY .EC)TS MOTHER N N 7 N D ) .-i -.-r.-.. T 7'77D3AY5- FPROCA NE PFeNE 6 6 mr5 4 B - 4 p t t O AN F: (t 4 !2 BSM TH C. 7>.ESS .... .. \MY k, Q4` r.) $ 7 A t 4 t. .... ... ..L . : .' 7 JAN MvX A I - . LJ .AAR.,. - 'i 4 '.' - e -) 11. copyright. FIG 3.-Treatment of mother and results of successive serum tests in mother and baby unmarried at the time of enquiry and 23 years of pregnant. She was given 600,000 units of procaine age. Between October, 1945, and May, 1947, she penicillin by intramuscular injection on January had been treated with five courses of '914' and 5; this injection was repeated each day (except bismuth in a corrective training institution.
    [Show full text]
  • Differential Diagnosis of Complex Conditions in Paleopathology: a Mutational Spectrum Approach by Elizabeth Lukashal a Thesis
    Differential Diagnosis of Complex Conditions in Paleopathology: A Mutational Spectrum Approach by Elizabeth Lukashal A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Arts in Public Issues Anthropology Waterloo, Ontario, Canada, 2021 © Elizabeth Lukashal 2021 Author’s Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract The expression of mutations causing complex conditions varies considerably on a scale of mild to severe referred to as a mutational spectrum. Capturing a complete picture of this scale in the archaeological record through the study of human remains is limited due to a number of factors complicating the diagnosis of complex conditions. An array of potential etiologies for particular conditions, and crossover of various symptoms add an extra layer of complexity preventing paleopathologists from confidently attempting a differential diagnosis. This study attempts to address these challenges in a number of ways: 1) by providing an overview of congenital and developmental anomalies important in the identification of mild expressions related to mutations causing complex conditions; 2) by outlining diagnostic features of select anomalies used as screening tools for complex conditions in the medical field ; 3) by assessing how mild/carrier expressions of mutations and conditions with minimal skeletal impact are accounted for and used within paleopathology; and 4) by considering the potential of these mild expressions in illuminating additional diagnostic and environmental information regarding past populations.
    [Show full text]
  • Chronic Recurrent Multifocal Osteomyelitis in Children
    Chronic recurrent multifocal osteomyelitis in children Author: Doctor Hermann Girschick1 Creation Date: March 2002 Scientific Editor: Doctor Frank Dressler 1Klinik für Kinderkardiologie, Universitätsklinik der RWTH Aachen - Institut für Humangenetik, Pauwelsstr. 30, 52074 Aachen, Germany. [email protected] Abstract Keywords Included diseases Differential diagnosis Frequency Clinical signs Etiology Diagnostic methods Treatment References Abstract Chronic recurrent multifocal osteomyelitis (CRMO) in children is an inflammatory disorder. It affects mainly the metaphyses of the long bones, in addition to the spine, the pelvis and the shoulder girdle. However, bone lesions can occur at any site of the skeleton. Even though this disease has been recognized as a clinical entity for almost three decades now, its origin and pathogenesis are not entirely clear. No apparent infectious agents are detectable at the site of the bone lesion. No epidemiological data on incidence and prevalence have been published so far. However, incidence might be something around 1:1,000,000, thus reflecting the number of patients followed-up. Clinical diagnosis in an affected child can be difficult because the clinical picture and course of disease may vary significantly. It has been shown that histological examination alone does not allow the distinction of CRMO from acute or subacute bacterial osteomyelitis. Therefore an extensive microbial workup of the tissue biopsy, including PCR- techniques, is essential in order to establish the diagnosis and decide as to the treatment. Non steroid anti-inflammatory drugs (NSAID) are the treatment of choice. In case of frequent relapses oral steroid treatment, bisphosphonates and azulfidine have been used and are reported to be beneficial.
    [Show full text]
  • Posture: MODERN DANCERS HAVE When Your Joints Are Aligned So There Is No Extra a HISTORY of Stress Or Un-Needed Muscle Work
    60% TO 80% OF BALLET AND ‘Good’ Posture: MODERN DANCERS HAVE when your joints are aligned so there is no extra A HISTORY OF stress or un-needed muscle work BACK INJURY Why does having good posture matter? Poor spinal posture and technique can contribute to pelvic and lower extremity malalignment and injury. Fatigue Ineffective breathing Pain Overuse injuries such as muscle strains, inflammation, irritation 5 steps to finding ‘good’ posture: 1 Align your legs to be shoulder width apart, or comfortably apart with feet flat on the floor [when standing, do not lock your knees] 2 Pull in your stomach to contract your abdomen; this may decrease the curve in your low back slightly but do NOT tuck your hips under your body 3 Slightly lift your chest bone [sternum] so your shoulders fall backward 4 Balance your head on your neck keeping your head from protruding forward 5 Consciously check to make sure your weight is not shifted toward one direction. Your weight should be balanced between your right and left, front and back. Handout created 2/20/17 by: Kaaren Clark, SPT; Faculty Advisor: Dr. Leslie Russek, PT, PhD, OCS Clarkson University Physical Therapy Program This information is intended to be general advice; always consult with your healthcare provider ‘ G o o d ’ P o s t u r e Common‘ G o o d ’ P oProblems s t u r e : in dance Posture? w h e n y o u r THORACIC KYPHOSIS (Rounded-back) Increases risk for: damage in the lumbar spine; increases spinal lordosis Due to: Frequently no apparent cause but can be aggravated by poor A.
    [Show full text]
  • Knee and Foot Surgery in Adults with Cerebral Palsy
    Knee and Foot Surgery in Adults with Cerebral Palsy Hank Chambers, MD Professor of Clinical Orthopedic Surgery University of California at San Diego Rady Children’s Hospital I. General Problems: Ambulatory vs Nonambulatory Patients a. Loss of Function b. Loss of Strength c. Loss of walking ability d. Loss of balance e. Skin problems and ulceration f. Shoe and Orthotic wear problems II. Knee Problems a. Femoral Anteversion i. Correction with Femoral Osteotomy b. Internal or External Tibial Torsion i. Correction with Tibial and Fibular Osteotomies c. Hamstring Contractures i. Non Operative Treatment 1. Botulinum Toxins 2. Physical Therapy 3. Bracing ii. Operative Treatment 1. Surgical Lengthening of the hamstrings d. Knee Contractures: Flexion i. Serial Casting ii. Distal Femoral Extension Osteotomy e. Patella Alta and Patellar Fractures i. Patellar tendon distalization ii. Patellar Tendon Reefing f. Genu Varum, Genu Valgum i. Treatment with osteotomies g. Meniscus Tears i. Anterior meniscus tears in patients with recurvatum h. Ligament Injuries i. Acute injuries of ACL, MCL ii. Chronic injuries in patients with genu varum and genu valgum III. Ankle and Foot Problems a. Equinus i. Botulinum Toxins ii. Lengthening of gastrocsoleus muscles iii. Distal Tibial Closing Wedge Osteotomy b. Equinovarus i. Botulinum Toxins ii. Lengthening of gastrocsoleus muscles iii. Role of tendon transfers 1. Split Anterior Tibial Tendon Transfer (SPLATT) 2. Split Posterior Tibial Tendon Transfer (SPOTT) iv. Selective Osteotomies v. Selective Fusions 1. Talonavicular Joint 2. Calcaneoncuboid Joint 3. Talocalcaneal Joint vi. Triple Arthrodesis c. Cavovarus Feet i. Selective Osteotomies ii. Selective Fusions d. Equinovalgus i. Botulinum Toxins ii. Lengthening of the gastrocnemius muscles iii.
    [Show full text]