Basolateral Amygdala Regulation of Adult Hippocampal Neurogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Basolateral Amygdala Regulation of Adult Hippocampal Neurogenesis Molecular Psychiatry (2012) 17, 527–536 & 2012 Macmillan Publishers Limited All rights reserved 1359-4184/12 www.nature.com/mp ORIGINAL ARTICLE Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons ED Kirby1, AR Friedman2, D Covarrubias3, C Ying2, WG Sun2, KA Goosens4, RM Sapolsky5 and D Kaufer1,2 1Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, CA, USA; 2Department of Integrative Biology, University of California-Berkeley, Berkeley, CA, USA; 3Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, USA; 4McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA and 5Department of Biological Sciences, Neurology and Neurological Sciences, Stanford, CA, USA Impaired regulation of emotional memory is a feature of several affective disorders, including depression, anxiety and post-traumatic stress disorder. Such regulation occurs, in part, by interactions between the hippocampus and the basolateral amygdala (BLA). Recent studies have indicated that within the adult hippocampus, newborn neurons may contribute to support emotional memory, and that regulation of hippocampal neurogenesis is implicated in depressive disorders. How emotional information affects newborn neurons in adults is not clear. Given the role of the BLA in hippocampus-dependent emotional memory, we investigated whether hippocampal neurogenesis was sensitive to emotional stimuli from the BLA. We show that BLA lesions suppress adult neurogenesis, while lesions of the central nucleus of the amygdala do not. Similarly, we show that reducing BLA activity through viral vector-mediated overexpression of an outwardly rectifying potassium channel suppresses neurogenesis. We also show that BLA lesions prevent selective activation of immature newborn neurons in response to a fear-conditioning task. These results demonstrate that BLA activity regulates adult hippocampal neurogenesis and the fear context-specific activation of newborn neurons. Together, these findings denote functional implications for proliferation and recruitment of new neurons into emotional memory circuits. Molecular Psychiatry (2012) 17, 527–536; doi:10.1038/mp.2011.71; published online 14 June 2011 Keywords: neurogenesis; hippocampus; fear conditioning; basolateral amygdala; emotion; stem cell Emotion strongly modulates memory function in campal output to other brain areas.11 BLA activity also adult mammals, altering the strength and longevity modulates activation of hippocampal immediate early of memories and sometimes leading to memory genes, another marker of hippocampal plasticity,12 as dysfunction. Notably, disordered emotional memory well as hippocampal responses to stress,13,14 further contributes to several affective disorders, including suggesting a modulatory role for the BLA in hippo- depression, anxiety and post-traumatic stress disor- campal function. der. Emotion-associated modulation of memory Recent studies suggest a role for adult hippocampal appears to rely largely on interaction between the neurogenesis in emotional memory function.15–19 In memory processes of the hippocampus and emotional adult mammals, new hippocampal neurons arise from input provided by the basolateral complex of the a resident population of neural stem cells located in amygdala (BLA).1–4 Behaviorally, BLA activity sup- the dentate gyrus20–23 and form a population of ports memory for emotionally salient stimuli in immature neurons that incorporate into existing rodents and humans,1,5,6 whereas at the neurophysio- networks within weeks of birth.24 Ablation of adult logical level, BLA activity supports hippocampal neurogenesis by genetic knockout or irradiation long-term potentiation (LTP)7–10 and enhances hippo- impairs contextual fear memory15,16 and may also modulate the transfer of fear-related memories from the hippocampus to other neural structures for long- Correspondence: Dr D Kaufer, Integrative Biology, University of term storage.17 The heightened plasticity of newly California-Berkeley, 3060 Valley Life Sciences Building #3140, born neurons appears to be important, as acceleration Berkeley, CA 94720, USA. of their maturation impairs fear learning.25 The E-mail: [email protected] Received 7 February 2011; revised 9 May 2011; accepted 10 May requirement of new neurons for fear memory suggests 2011; published online 14 June 2011 a clinical role for adult neurogenesis in several Amygdala and adult hippocampal neurogenesis ED Kirby et al 528 affective disorders.3,26,27 However, the mechanisms by anti-BrdU, 1:500, BD Biosciences, San Jose, CA, which adult neurogenesis responds to emotional USA). Sections were rinsed and transferred to stimuli to influence memory formation are not yet secondary antibody (biotin anti-mouse, 1:500, Jackson clear. ImmunoResearch, West Grove, PA, USA) for 2 h at We explored the adult neurogenic response to room temperature. Following rinsing, sections were emotional input from the BLA and its potential role incubated in ABC reagent (Vector, Burlingame, CA, in fear memory. Specifically, we investigated how USA) and then developed with DAB (Vector). Sections BLA activity would affect adult neurogenesis and were mounted on gelatin-coated slides, dehydrated in modulate activation of immature neurons in response alcohol and coverslipped with permount mounting to fear-associated context. medium (Fisher Scientific, Waltham, MA, USA). Triple immunohistochemistry was performed simi- Materials and methods larly. Primary antibodies were: goat anti-DCX (1:200, Santa Cruz Biotechnology, Santa Cruz, CA, USA), Animals mouse anti-S100b (1:200, Abcam), rat anti-MBP Adult male Sprague–Dawley rats (Charles River, (1:100, Abcam), rabbit anti-cfos (1:100; Santa Cruz Wilmington, MA, USA) were pair-housed on a 12-h Biotechnology). Secondary antibodies were: Cy5 anti- light/dark cycle. All animal procedures were ap- goat, Cy3 anti-mouse, Cy3 anti-rat, biotin anti-rabbit proved by the UC Berkeley and MIT Animal Care (1:500; Jackson ImmunoResearch). For the cFos/ and Use Committees. BrdU/doublecortin (DCX) triple stain, a tertiary incubation for 1 h at room temperature was included Stereotaxic surgery with streptavidin-Alexa488 (1:1000 in TBS, Invitro- Excitotoxic lesions of the BLA or central nucleus of gen, Carlsbad, CA, USA) after secondary incubation. the amygdala (CeA) or sham surgeries were performed All sections were then incubated in 4% paraformal- as explained earlier.28.Coordinates for BLA infusion dehyde for 10 min, rinsed and incubated in primary were: À2.8 mm anterior/posterior, ±5.1 mm medial/ antibody against BrdU as above (1:500, rat anti-BrdU, lateral relative to bregma; À6.8 mm (2 min) and Abcam; mouse anti-BrdU, BD Biosciences). The next À6.5 mm (1 min) relative to dura. Coordinates for day, sections were rinsed and incubated in secondary CeA infusion were: À2.2 mm anterior/posterior and antibody: FITC anti-rat; Cy3 anti-rat; biotin anti-rat ±4.4 mm medial/lateral relative to bregma; À7.0 mm (1:500, Jackson ImmunoResearch). For myelin basic from dura (1 min). At 6 to 8 h after surgery, all rats protein (MBP)/BrdU staining, a tertiary incubation for received an additional injection of buprenorphine 1 h at room temperature was added with streptavidin- (0.05 mg kgÀ1, s.c.). For viral vector infusions, virus Alexa488 (1:1000 in TBS, Invitrogen). Sections were was infused 0.2 ml minÀ1 for 10 min (2 ml total) at the mounted on gelatin-coated slides and coverslipped same BLA coordinates. Viral vectors were prepared with DABCO anti-fading medium (Fisher Scientific). as previously explained29 and titers were 106–108 infectious particles per ml. BrdU, PCNA and cFos quantification BrdU-, PCNA- or cFos-positive cells were counted in Bromodeoxyuridine injections the dentate gyrus and subgranular zone using a  40 5-Bromo-20-deoxyuridine (BrdU, Sigma, St Louis, air objective (Zeiss, Oberkochen, Germany). The area MO, USA) was dissolved in physiological saline and sampled was calculated using StereoInvestigator injected intraperitoneally for all experiments. software (MicroBrightfield, Williston, VT, USA) and used to calculate the number of positive cells per mm2. Immunohistochemical staining Rats were anesthetized with Euthasol euthanasia Confocal analysis solution (Virbac, Fort Worth, TX, USA) and trans- A total of 25–50 BrdU- or cFos-positive cells were cardially perfused with ice-cold 4% paraformaldehyde located in the dentate gyrus for each animal (or each in 0.1 M phosphate-buffered saline. Brains were post- hemisphere for unilateral lesion) and assessed in fixed for 24 h at 4 1C, equilibrated in 30% sucrose in z-series of < 1.0 mm slices to determine if other markers 0.1 M phosphate-buffered saline and then stored at (DCX, S100b, MBP, cFos, BrdU) were co-expressed. À80 1C. Immunostaining was performed on a 1 in 6 Confocal images were captured on a Zeiss 510 META/ series of free-floating 30 mm cryostat sections. NLO confocal microscope with a  40 oil objective For proliferating cell nuclear antigen and BrdU and adjusted for brightness and contrast using LSM staining, sections were rinsed in 0.1 M Tris-buffered Image Browser software (Zeiss). saline (TBS) and pretreated for 10 min with 0.3% H2O2 in TBS. For BrdU only, sections were incubated Lesion and viral vector assessment in 2 N HCl at 37 1C for 30 min. All sections were One series of sections was mounted and counter- incubated in blocking solution (1% normal donkey stained
Recommended publications
  • 613638V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hippocampal network reorganization underlies the formation of a temporal association memory Mohsin S. Ahmed1,2,*, James B. Priestley2,3,4,*, Angel Castro1,2, Fabio Stefanini3,4, Elizabeth M. Balough2,3, Erin Lavoie1,2, Luca Mazzucato2,4,5,6, Stefano Fusi2,4,5, Attila Losonczy2,5y 1 Department of Psychiatry 2 Department of Neuroscience 3 Doctoral Program in Neurobiology and Behavior 4 Center for Theoretical Neuroscience 5 Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University, New York, NY 10027 USA 6 Departments of Mathematics and Biology University of Oregon, Eugene, OR 97403 USA ∗ These authors contributed equally to this work y To whom correspondence should be addressed: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract 1 Episodic memory requires linking events in time, a function dependent on the hippocampus. In 2 \trace" fear conditioning, animals learn to associate a neutral cue with an aversive stimulus despite 3 their separation in time by a delay period on the order of tens of seconds. But how this temporal 4 association forms remains unclear. Here we use 2-photon calcium imaging to track neural 5 population dynamics over the complete time-course of learning and show that, in contrast to 6 previous theories, the hippocampus does not generate persistent activity to bridge the time delay.
    [Show full text]
  • The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder
    Biological Psychiatry: Commentary CNNI The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder Robert Stickgold and Dara S. Manoach Abnormal sleep is a prominent feature of Axis I neuropsychia- fear and distress are extinguished. Based on a compelling tric disorders and is often included in their DSM-5 diagnostic body of work from human and rodent studies, fear extinction criteria. While often viewed as secondary, because these reflects not the erasure of the fear memory but the develop- disorders may themselves diminish sleep quality, there is ment of a new safety or “extinction memory” that inhibits the growing evidence that sleep disorders can aggravate, trigger, fear memory and its associated emotional response. and even cause a range of neuropsychiatric conditions. In this issue, Straus et al. (3 ) report that total sleep Moreover, as has been shown in major depression and deprivation can impair the retention of such extinction mem- attention-deficit/hyperactivity disorder, treating sleep can ories. In their study, healthy human participants in three improve symptoms, suggesting that disrupted sleep contri- groups successfully learned to associate a blue circle (condi- butes to the clinical syndrome and is an appropriate target for tioned stimulus) with the occurrence of an electric shock treatment. In addition to its effects on symptoms, sleep (unconditioned stimulus) during a fear acquisition session. disturbance, which is known to impair emotional regulation The following day, during extinction learning, the blue circle and cognition in otherwise healthy individuals, may contribute was repeatedly presented without the shock. The day after to or cause disabling cognitive deficits. For sleep to be a target that, extinction recall was tested by again repeatedly present- for treatment of symptoms and cognitive deficits in neurop- ing the blue circle without the shock.
    [Show full text]
  • The Amygdala, Fear and Reconsolidation
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140 The Amygdala, Fear and Reconsolidation Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia JOHANNES BJÖRKSTRAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1652-9030 ISBN 978-91-554-9863-4 UPPSALA urn:nbn:se:uu:diva-317866 2017 Dissertation presented at Uppsala University to be publicly examined in Gunnar Johansson salen, Blåsenhus, von Kraemers allé 1A, Uppsala, Friday, 12 May 2017 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Emily Holmes (Karolinska institutet, Institutionen för klinisk neurovetenskap; University of Oxford, Department of Psychiatry). Abstract Björkstrand, J. 2017. The Amygdala, Fear and Reconsolidation. Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9863-4. The amygdala is crucially involved in the acquisition and retention of fear memories. Experimental research on fear conditioning has shown that memory retrieval shortly followed by pharmacological manipulations or extinction, thereby interfering with memory reconsolidation, decreases later fear expression. Fear memory reconsolidation depends on synaptic plasticity in the amygdala, which has been demonstrated in rodents using both pharmacological manipulations and retrieval-extinction procedures. The retrieval-extinction procedure decreases fear expression also in humans, but the underlying neural mechanism have not been studied. Interfering with reconsolidation is held to alter the original fear memory representation, resulting in long-term reductions in fear responses, and might therefore be used in the treatment of anxiety disorders, but few studies have directly investigated this question.
    [Show full text]
  • Noradrenergic Blockade Stabilizes Prefrontal Activity and Enables Fear
    Noradrenergic blockade stabilizes prefrontal activity PNAS PLUS and enables fear extinction under stress Paul J. Fitzgeralda,1, Thomas F. Giustinoa,b,1, Jocelyn R. Seemanna,b,1, and Stephen Marena,b,2 aDepartment of Psychology, Texas A&M University, College Station, TX 77843; and bInstitute for Neuroscience, Texas A&M University, College Station, TX 77843 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved June 1, 2015 (received for review January 12, 2015) Stress-induced impairments in extinction learning are believed to preferentially involved in fear extinction (32–34). Stress-induced sustain posttraumatic stress disorder (PTSD). Noradrenergic sig- alterations in the balance of neuronal activity in PL and IL as a naling may contribute to extinction impairments by modulating consequence of noradrenergic hyperarousal might therefore con- medial prefrontal cortex (mPFC) circuits involved in fear regula- tribute to extinction impairments and the maintenance of PTSD. tion. Here we demonstrate that aversive fear conditioning rapidly To address this question, we combine in vivo microelectrode re- and persistently alters spontaneous single-unit activity in the cording in freely moving rats with behavioral and pharmacological prelimbic and infralimbic subdivisions of the mPFC in behaving manipulations to determine whether β-noradrenergic receptors rats. These conditioning-induced changes in mPFC firing were mediate stress-induced alterations in mPFC neuronal activity. mitigated by systemic administration of propranolol (10 mg/kg, Further, we examine whether systemic propranolol treatment, i.p.), a β-noradrenergic receptor antagonist. Moreover, proprano- given immediately after an aversive experience, rescues stress- lol administration dampened the stress-induced impairment in ex- induced impairments in fear extinction.
    [Show full text]
  • Social Fear Memory Requires Two Stages of Protein Synthesis in Mice
    International Journal of Molecular Sciences Communication Social Fear Memory Requires Two Stages of Protein Synthesis in Mice Johannes Kornhuber 1 and Iulia Zoicas 1,2,* 1 Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; [email protected] 2 Department of Behavioural and Molecular Neurobiology, University of Regensburg, 93040 Regensburg, Germany * Correspondence: [email protected]; Tel.: +49-9131-85-46005 Received: 10 June 2020; Accepted: 1 August 2020; Published: 2 August 2020 Abstract: It is well known that long-term consolidation of newly acquired information, including information related to social fear, require de novo protein synthesis. However, the temporal dynamics of protein synthesis during the consolidation of social fear memories is unclear. To address this question, mice received a single systemic injection with the protein synthesis inhibitor, anisomycin, at different time-points before or after social fear conditioning (SFC), and memory was assessed 24 h later. We showed that anisomycin impaired the consolidation of social fear memories in a time-point-dependent manner. Mice that received anisomycin 20 min before, immediately after, 6 h, or 8 h after SFC showed reduced expression of social fear, indicating impaired social fear memory, whereas anisomycin caused no effects when administered 4 h after SFC. These results suggest that consolidation of social fear memories requires two stages of protein synthesis: (1) an initial stage starting during or immediately after SFC, and (2) a second stage starting around 6 h after SFC and lasting for at least 5 h. Keywords: social fear; social anxiety; anisomycin; protein synthesis; social investigation; fear learning; fear acquisition; fear extinction; fear memory; memory consolidation 1.
    [Show full text]
  • The Ventromedial Prefrontal Cortex in a Model of Traumatic Stress: Fear Inhibition Or Contextual Processing?
    Downloaded from learnmem.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Research The ventromedial prefrontal cortex in a model of traumatic stress: fear inhibition or contextual processing? Zachary T. Pennington,1 Austin S. Anderson,1 and Michael S. Fanselow1,2 1Department of Psychology, UCLA, Los Angeles, California 90095, USA; 2Brain Research Institute, UCLA, Los Angeles, California 90095, USA The ventromedial prefrontal cortex (vmPFC) has consistently appeared altered in post-traumatic stress disorder (PTSD). Although the vmPFC is thought to support the extinction of learned fear responses, several findings support a broader role for this structure in the regulation of fear. To further characterize the relationship between vmPFC dysfunction and responses to traumatic stress, we examined the effects of pretraining vmPFC lesions on trauma reactivity and enhanced fear learning in a rodent model of PTSD. In Experiment 1, lesions did not produce differences in shock reactivity during an acute traumatic episode, nor did they alter the strength of the traumatic memory. However, when lesioned animals were subsequently given a single mild aversive stimulus in a novel context, they showed a blunting of the enhanced fear response to this context seen in traumatized animals. In order to address this counterintuitive finding, Experiment 2 assessed whether lesions also attenuated fear responses to discrete tone cues. Enhanced fear for discrete cues following trauma was preserved in lesioned animals, indicating that the deficit observed in Experiment 1 is limited to contextual stimuli. These findings further support the notion that the vmPFC contributes to the regulation of fear through its influence on context learning and contrasts the prevailing view that the vmPFC directly inhibits fear.
    [Show full text]
  • NEUROBIOLOGY of PAVLOVIAN FEAR CONDITIONING Stephen
    P1: FQP April 4, 2001 18:39 Annual Reviews AR121-29 Annu. Rev. Neurosci. 2001. 24:897–931 Copyright c 2001 by Annual Reviews. All rights reserved NEUROBIOLOGY OF PAVLOVIAN FEAR CONDITIONING Stephen Maren Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1109; e-mail: [email protected] Key Words learning, memory, amygdala, hippocampus, synaptic plasticity ■ Abstract Learning the relationships between aversive events and the environmen- tal stimuli that predict such events is essential to the survival of organisms throughout the animal kingdom. Pavlovian fear conditioning is an exemplar of this form of learning that is exhibited by both rats and humans. Recent years have seen an incredible surge in interest in the neurobiology of fear conditioning. Neural circuits underlying fear con- ditioning have been mapped, synaptic plasticity in these circuits has been identified, and biochemical and genetic manipulations are beginning to unravel the molecular machinery responsible for the storage of fear memories. These advances represent an important step in understanding the neural substrates of a rapidly acquired and adaptive form of associative learning and memory in mammals. INTRODUCTION To sum up, we may legitimately claim the study of the formation and properties of conditioned reflexes as a special department of physiology. I. P. Pavlov, 1927 Seventy-five years ago, Ivan Petrovich Pavlov advocated the physiological anal- ysis of the simple form of associative learning that carries his name: Pavlovian or classical conditioning (Pavlov 1927). If Pavlov were alive today, he would most certainly be impressed with the amazing progress we have made in delineating the brain circuits and neuronal mechanisms underlying Pavlovian conditioning in a variety of behavioral systems and species (Holland & Gallagher 1999, Krasne & Glanzman 1995, Thompson & Krupa 1994).
    [Show full text]
  • Fear Conditioning Fear Conditioning in C57BL/6J Male Mice Using
    Stanford Behavioral and Functional Neuroscience Lab Fear Conditioning in C57BL/6J Male Mice using Scopolamine Title: Procedure Fear Conditioning Stanford Behavioral and Functional Neuroscience Lab Fear Conditioning Fear Conditioning (FC) is a type of associative learning task in which mice learn to associate a particular neutral Conditional Stimulus (CS; often a tone) with an aversive Unconditional Stimulus (US; often a mild electrical foot shock) and show a Conditional Response (CR; often as freezing). After repeated pairings of CS and US, the animal learns to fear both the tone and training context. FC is learned rapidly, and after one conditioning session, a very stable and long-lasting behavioral change is produced which is useful for neurobehavioral, genetic, and pharmacological studies. In Trace FC the CS and the US are separated by a certain time interval. It has been shown that the frontotemporal amygdala has an important role in both acquisition and expression of conditional fear and that the hippocampus is necessary for contextual and trace FC. Two different contexts, Context A and B, are used in FC. In the first day, the subjects are placed in Context A, and after 3 min, they receive five tone-shock pairings. The shock (0.5 mA, 2 sec) is delivered 18 sec after the end of the tone (75dB, 2 kHz, 20 sec). An empty trace interval interposes between the tone and the shock in each CS-US pairing. In the second day, mice are placed in Context B (new olfactive cue, floor texture, and visual cues) for 3 min and subsequently given three tone presentations without any shocks.
    [Show full text]
  • Functions of SK Channels in Central Neurons
    Proceedings of the Australian Physiological Society (2007) 38: 25-34 http://www.aups.org.au/Proceedings/38/25-34 ©E.S.L. Faber 2007 Functions of SK channels in central neurons E.S. Louise Faber and Pankaj Sah Queensland Brain Institute,University of Queensland, St Lucia, QLD 4072, Australia Summary only share significant homology with voltage-gated potassium channels in the pore region3 (Figure 1b). SK 1. SK channels are small conductance calcium- channels lack an obvious calcium-binding domain and their activated potassium channels that are widely expressed in calcium sensitivity is conferred by calmodulin, which is neurons. The traditional viewofthe functional role of SK constitutively bound to the C terminus of the channel and channels is in mediating one component of the causes channel opening upon binding of calcium.9-11 afterhyperpolarisation that follows action potentials. In situ hybridisation3,12,13 and Calcium influx via voltage-gated calcium channels active immunohistochemistry14,15 have shown that SK channels during action potentials opens SK channels and the are widely expressed throughout the central nervous resultant hyperpolarisation lowers the firing frequencyof system. SK1 and SK2 subunits are expressed at their action potentials in manyneurons. highest density in the hippocampus and cortex, whereas 2. Recent advances have shown that in addition to SK3 subunits are expressed at their highest levels in regions controlling action potential firing frequency, SKchannels such as the hypothalamus, thalamus and midbrain. When are also important in regulating dendritic excitability, expressed as homomultimers,3 SK channel subunits form synaptic transmission and synaptic plasticity. ion channels that have functional characteristics typical of 3.
    [Show full text]
  • Fear Conditioning in Posttraumatic Stress Disorder: Evidence for Delayed Extinction of Autonomic, Experiential, and Behavioural Responses
    ARTICLE IN PRESS Behaviour Research and Therapy 45 (2007) 2019–2033 www.elsevier.com/locate/brat Fear conditioning in posttraumatic stress disorder: Evidence for delayed extinction of autonomic, experiential, and behavioural responses Jens BlechertÃ, Tanja Michael, Noortje Vriends, Ju¨rgen Margraf, Frank H. Wilhelm Department of Clinical Psychology and Psychotherapy, Institute for Psychology, University of Basel, Missionsstrasse 60/62, CH-4055 Basel, Switzerland Received 29 August 2006; received in revised form 26 February 2007; accepted 28 February 2007 Abstract Aversive conditioning has been proposed as an important factor involved in the etiology of posttraumatic stress disorder (PTSD). However, it is not yet fully understood exactly which learning mechanisms are characteristic for PTSD. PTSD patients (n ¼ 36), and healthy individuals with and without trauma exposure (TE group, n ¼ 21; nTE group, n ¼ 34), underwent a differential fear conditioning experiment consisting of habituation, acquisition, and extinction phases. An electrical stimulus served as the unconditioned stimulus (US), and two neutral pictures as conditioned stimuli (CSþ, paired; CSÀ, unpaired). Conditioned responses were quantified by skin conductance responses (SCRs), subjective ratings of CS valence and US-expectancy, and a behavioural test. In contrast to the nTE group, PTSD patients showed delayed extinction of SCRs to the CSþ. Online ratings of valence and US-expectancy as well as the behavioural test confirmed this pattern. These findings point to a deficit in extinction learning and highlight the role of affective valence appraisals and cognitive biases in PTSD. In addition, there was some evidence that a subgroup of PTSD patients had difficulties in learning the CS–US contingency, thereby providing preliminary evidence of reduced discrimination learning.
    [Show full text]
  • Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment
    brain sciences Opinion Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment Sara Markowitz and Michael Fanselow * Psychology Department, University of California, Los Angeles, CA 90095, USA; [email protected] * Correspondence: [email protected]; Tel.: +310-206-3891 Received: 13 February 2020; Accepted: 10 March 2020; Published: 13 March 2020 Abstract: Recent research indicates that there is mixed success in using exposure therapies on patients with post-traumatic stress disorder (PTSD). Our study argues that there are two major reasons for this: The first is that there are nonassociative aspects of PTSD, such as hyperactive amygdala activity, that cannot be attenuated using the exposure therapy; The second is that exposure therapy is conceptualized from the theoretical framework of Pavlovian fear extinction, which we know is heavily context dependent. Thus, reducing fear response in a therapist’s office does not guarantee reduced response in other situations. This study also discusses work relating to the role of the hippocampus in context encoding, and how these findings can be beneficial for improving exposure therapies. Keywords: post-traumatic stress disorder; exposure therapy; fear extinction; nonassociative 1. Introduction Post-traumatic stress disorder (PTSD) is a mental disorder affecting up to 9% of the US population [1]. It can best be described as a heightened arousal response after experiencing an extremely stressful event or trauma. Distress due to and avoidance of reminders of the trauma are common, as are negative alterations in mood [2]. It is theorized that PTSD is strongly related to fear learning and conditioned fear, and therefore, fear conditioning is often used as a model in anxiety-related studies [3].
    [Show full text]
  • Amygdala-Dependent Fear Memory Consolidation Via Mir-34A and Notch Signaling
    Neuron Article Amygdala-Dependent Fear Memory Consolidation via miR-34a and Notch Signaling Brian George Dias,1,2,* Jared Vega Goodman,1,2 Ranbir Ahluwalia,1,2 Audrey Elizabeth Easton,1,2 Rau¨ l Andero,1,2 and Kerry James Ressler1,2,3 1Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30329, USA 2Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30329, USA 3Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2014.07.019 SUMMARY of the genetic and molecular mechanisms occurring within spe- cific brain regions that underlie specific memory consolidation Using an array-based approach after auditory fear processes. conditioning and microRNA (miRNA) sponge-medi- Auditory fear conditioning presents a framework within which ated inhibition, we identified a role for miR-34a within to study the consolidation of cued fear memory (Johansen et al., the basolateral amygdala (BLA) in fear memory 2011). In this classical conditioning paradigm, animals are first consolidation. Luciferase assays and bioinformatics trained to associate auditory cues with mild foot-shocks. By sub- suggested the Notch pathway as a target of miR- sequently presenting animals with only the auditory cues, the consolidation of associative learning can be assessed. Within 34a. mRNA and protein levels of Notch receptors the brain, the amygdala has received considerable attention and ligands are downregulated in a time- and for its role in consolidating these learned associations (Maren, learning-specific manner after fear conditioning in 2003). As a result, the molecular and genetic landscape within the amygdala.
    [Show full text]