bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.937433; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Fatty Acyl Availability Modulates Cardiolipin Composition and Alters Mitochondrial Function in HeLa Cells Gregor Oemera, Marie-Luise Edenhofera,b, Katharina Lacknera,c, Geraldine Lemand, Jakob Kocha, Herbert H. Lindnere, Sandrine Dubracd, Johannes Zschockea, Markus A. Kellera* *To whom correspondence should be addressed. Email:
[email protected]. a) Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria b) Institute of Neurophysiology, Medical University of Innsbruck, Innsbruck, Austria c) Institute of Biological Chemistry, Biocenter Innsbruck, Medical University of Innsbruck, Innsbruck, Austria d) Epidermal Biology Laboratory, Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria e) Institute of Clinical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria Abstract The molecular assembly of cells depends not only on their balance between anabolism and catabolism, but to a large degree also on the building blocks available in the environment. For cultivated mammalian cells, this is largely determined by the composition of the growth medium used. Here we study the impact of medium lipids on mitochondrial membrane architecture and function by combining LC- MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum- and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins (CL) strongly depends on the lipid environment in cultured cells and prefers the incorporation of essential linoleic acid over other fatty acids.