A Mass Migration of Aeshna Affinis in Southern Kyrgyzstan: Attempt to Provide a Spatial and Temporal Reconstruction (Odonata: Aeshnidae) 203-233 ©Ges

Total Page:16

File Type:pdf, Size:1020Kb

A Mass Migration of Aeshna Affinis in Southern Kyrgyzstan: Attempt to Provide a Spatial and Temporal Reconstruction (Odonata: Aeshnidae) 203-233 ©Ges ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Libellula Jahr/Year: 2011 Band/Volume: 30 Autor(en)/Author(s): Schröter Asmus Artikel/Article: A mass migration of Aeshna affinis in southern Kyrgyzstan: attempt to provide a spatial and temporal reconstruction (Odonata: Aeshnidae) 203-233 ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at Mass migration of Aeshna affinis in Kyrgyzstan 20. Dezember 2011203 A mass migration of Aeshna affinis in southern Kyrgyzstan: attempt to provide a spatial and temporal reconstruction (Odonata: Aeshnidae) Asmus Schröter Rasenweg 10, D-37130 Gleichen, <[email protected]> Abstract A mass migration of Aeshna affinis is reported for the first time. The phenomenon with preceding mass emergence took place in June 2009 in the Jalalabad province in southern Kyrgyzstan. The genesis of the mass migration is summed up, reconstructed and com- pared with common hypotheses and literature. With reference to the ecology of A. affinis in Europe, the prevailing ecological and climatic conditions are discussed. Zusammenfassung Eine Massenwanderung von Aeshna affinis im südlichen Kirgisistan: Versuch einer zeitli- chen und räumlichen Rekonstruktion (Odonata: Aeshnidae) – Im Juni 2009 wurde in der Provinz Jalalabad im südlichen Kirgisistan ein Massenschlupf von Aeshna affinis mit an- schließender Massenmigration beobachtet. Neben der räumlichen und zeitlichen Rekon- struktion des Szenarios werden die wichtigsten potenziell zugrunde liegenden ökologi- schen, klimatischen und physiologischen Kausalzusammenhänge diskutiert sowie die aus Europa bekannten Fakten zur Ökologie von A. affinis jenen in Kirgisistan gegenüberge- stellt. Introduction Migration of dragonflies is one of the most interesting and intriguing phenom- ena in odonatology, and the number of publications dealing with this subject runs into hundreds. A comprehensive review of worldwide published data was presented by Corbet (1999). There are various reasons for dragonflies to mi- grate. Some species are apparently obligate wanderers and long distance migraAnax- ephippigertion seems to be a crucial factor to circumvent unfavourable living conditions, such as seasonal droughts, as is demonstrated in an exemplary fashion by (Peters 1987; Corbet 1999: 412). Other speciesLibellula 30with (3/4) a 2011:highly 203-232 spe- ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at 204 Asmus Schröter Sympetrumcialised life arenicolorcycle undertake an obligatory seasonal vertical migration to spend their pre-reproductive period in aestivation refuges, such as the Central Asian Anax junius (Borisov 2006b; Schröter 2010). Some species even ex- hibit birdlike autumnal southward migrations to avoid seasonal cold weather, as in , which was found accompanying mixed flocks of migrating birds heading south (Bagg 1957, 1958). Other species are facultative wanderers, mi- grating irregularly only under certain conditions triggered by climate and popu- lation dynamics, Aeshna mixta with a variationSympetrum in thestriolatum behaviour of different populations of the same species living under different ecological conditions. For instance, in Algeria and exhibit a vertical migration up the mountains to spend their pre-reproductive period in upland refuges with a favourableAnax microclimate parthenope (SamraouiSympetrum et al. 1998), fonscolombii whereas in temperate latitudes these species do not have any reason for an according migration. The same ap- plies to and in the Kazakh western Tian Shan, where both are supposed to undertake autumnal migrations south- wards (Borisov 2009), but according to current knowledge do not do so in the Central or Southern European part of their distribution. A trigger for many species to undertake spatial displacement is preceding mass emergence with subsequent high population densities (Fraenkel 1932; Dumont Libellula& Hinnekint quadrimaculata 1973; Corbet 1999). Such mass migrations have al- ways fascinated people and reports of huge swarms of migrating dragonflies, often of L. quadrimaculata, which might comprise billions of individu- als (Fraenkel 1932), date back to the 19th Century (Richter 1863; Corne- lius 1862). Some species like with a huge distribution area exhibit at more or less regular intervals mass abundances with subsequent swarm migration (Dumont & Hinnekint 1973; Haritonov & Popova 2011). On the other hand, species with different population Somatochloradynamics and arcticaless disposed to mass emergence never or only exceptionally reach an abundance level that might trigger mass migration. The inconspicuous , which in Europe is considered to be occurring locally and mainly in small numbers (WildermuthAeshna 2006), affinis may aggregate under optimal circumstances to swarms comprising thousands of individuals (Dijkstra & Koese 2001). This seems to apply also to , which in Europe is considered to be widespread but seldom abundant (Dijkstra 2006) and to date has never been found to migrate Aeshnain large affinis aggregations. has a large distribution area stretching from Western Europe over the Levant to Central Asia. In Europe, it is primarily found around the Mediter- ranean (Boudot et al. 2009). The following paper aims to outlineA. affnis an overall picture of the entire complex of mass migration on a generalA. affinis level and to reconstruct and summarize mass emergence and mass migration of on a local scale. A further objective is to extend our knowledge of in particular, providing new aspects of its ecology from the eastern edge of its distribution. Libellula 30 (3/4) 2011: 203-232 ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at Mass migration of Aeshna affinis in Kyrgyzstan 205 Study region The Republic of Kyrgyzstan is the second smallest successor state of the five former Central Asian Soviet republics and shares borders with China, Tadzhiki- stan, Uzbekistan2 and Kazakhstan. It is landlocked and covers an area of roughly 200,000 km . Kyrgyzstan is a mountainous country, extending over the central and western part of the Tian Shan and the Trans-Alay range, both parts of the Hi- malayan orogenic belt. Dominated by high mountain ranges, almost 50 % of the national territory is situated at an altitude above 3,000 m and 90 % greater than 1,500 m above sea level (a.s.l.) (Maydell 1983: 154). The country’s geographical position between the glaciated peaks of the central Tian Shan and the adjacent desert region of the Turan Depression, however, offers an amazing variety of dif- ferent habitats, landscapes and climate types on a small scale. Арсланбоб; Жалалабат областы The studied area was situated in southern Kyrgyzstan close to the Usbek bor- der, near the town of ArslanbobБаубаш-Ата ( / Jalalabad province; 41°20’13.94’’N, 72°55’42.56’’E) in the walnut-fruit forest area at the foothills of the Baubash Ata ( ) mountain range. This mountain mas- sif is up to 4,427 m a.s.l. and covers approximately 30 km of the northwestern part of the Fergana ridge. Walnut-fruit forest is restricted to altitudes roughly between 1,000Juglans and 2,000regia m a.s.l., andAcer about turkestanicum 80 % is concentrated between 1,400 and 1,800 m a.s.l. (Kolov 1998;Malus Gan sieversii & VenglovskiPyrus 1997). korshinskyi The major tree speciesPrunus sogdianaare walnut Berberis, maple integerrima and several wild forms of fruit-bearing trees like apple , pear , plum and barberry . This forest represents the most extensive walnut forest stands worldwide and is characterized by remarkably high levels of genetic, species, and ecosystem biodiversity (Krassilov 1995; Hemery & Popov 1998). It is of major econom- ic importance for the local population (Borchardt et al. 2010; Schickhoff & Schmidt 2004). Due to increasing pressure of exploitation by a rapidly growing population and uncontrolled change to pasture, this unique ecosystem is severe- ly threatened (Kolov 1998; Gottschling et al. 2005; Borchardt et al. 2010; AS un publ.). The potential area that initially was covered by walnut-fruit forest is hard to reconstruct, as this forest has experienced a long period of human ex- ploitation. While the forest cover once may have reached the order of more than 350,000 ha, at present only 25,000-30,000 ha of dense walnut-fruit forest stands have remained (Scheuber et al. 2000; Gottschling 2005). Walnut-fruit forest is of high significance for Kyrgyzstan, which is one of the less wooded Asian countries with an entire forest cover of less than 4 % of the terri- tory (FAO 1990). The occurrence of dense deciduous forest is based on a specific regional climate, which deviates considerably from the arid and very continental macroclimate of southern Kyrgyzstan. While the adjacent desert lowland of the Fergana valley receives only a mean annual precipitation of 170-200 mm, the Libellula 30 (3/4) 2011: 203-232 ©Ges. deutschspr. Odonatologen e.V.; download www.libellula.org/libellula/ und www.zobodat.at 206 Asmus Schröter study region shows a considerably higher rate of precipitation, locally reaching at least 1,000 mm on an annual average (Franz 1973). According to Franz (1973) this is the highest precipitation rate in Kyrgyzstan. Precipitation reaches a peak from spring to early summer, a drought from mid- to late summer and a second peak in autumn (Fig. 7). The summers are usually hot with a high evaporation rate (Ponomarenko & Kenzhekaraev 1992).
Recommended publications
  • Recent Range Shifts of European Dragonflies Provide Support for An
    Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2013) 22, 403–409 bs_bs_banner RESEARCH Recent range shifts of European PAPER dragonflies provide support for an inverse relationship between habitat predictability and dispersal Yannic Grewe1, Christian Hof 2,3, D. Matthias Dehling2, Roland Brandl1 and Martin Brändle1* 1Department of Ecology – Animal Ecology, ABSTRACT Faculty of Biology, Philipps-Universität Aim We compared the effects of recent shifts of northern range boundaries of Marburg, Marburg, Germany, 2Biodiversity and Climate Research Centre (BiK-F) and odonates adapted to either lentic (standing water) or lotic (running water) habitats Senckenberg Gesellschaft für Naturforschung, in Europe. Lentic species are thought to have a higher dispersal propensity than Frankfurt (Main), Germany, 3Center for lotic species because of the lower spatial and temporal persistence of lentic habitats Macroecology, Evolution and Climate, on average. Hence, we expected shifts in the range boundaries particularly of lentic Department of Biology, University of species. Copenhagen, Copenhagen, Denmark Location Europe. Methods Our analyses are based on odonate distribution maps from two field guides that present the European ranges of dragonflies and damselflies in 1988 and 2006. We categorized species according to their preference for lentic or lotic habi- tats, and then assigned each species to a southern or a northern group according to the centre of its distribution. Shifts in northern range boundaries were calculated as the average distance between the 10 northernmost grid cells in 1988 and 2006. Range boundary shifts were also analysed with regard to prevalence, phenology, body size and wing size. Results Lentic species of the southern group expanded their range boundaries on average 115 km northwards per decade, whereas lotic species of the southern group on average did not change their range boundaries.
    [Show full text]
  • Dragonflies and Damselflies in Your Garden
    Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups.
    [Show full text]
  • An Anomalous Connection in the Genus Aeshna Fabricius, 1775 (Odonata: Aeshnidae) with an Additional Record of Aeshna Cyanea (Müller, 1764) from Turkish Thrace
    Acta entomologica serbica, 2010, 15(1): 1-6 UDC 595.733(560) AN ANOMALOUS CONNECTION IN THE GENUS AESHNA FABRICIUS, 1775 (ODONATA: AESHNIDAE) WITH AN ADDITIONAL RECORD OF AESHNA CYANEA (MÜLLER, 1764) FROM TURKISH THRACE NURTEN HACET Trakya University, Faculty of Arts and Sciences, Department of Biology, TR-22030 Edirne, Turkey E-mail: [email protected] Abstract A heterospecific tandem between a male Aeshna affinis Vander Linden, 1820 and a female Aeshna cyanea (Müller, 1764) is reported from İğneada (Longos Forest) in Kırklareli province in the Turkish Thrace Region. The locality, where the tandem was observed, is the second recording locality for A. cyanea from the region. KEY WORDS: Odonata, dragonfly, heterospecific tandem, Aeshnidae, Aeshna, Turkish Thrace, Turkey Introduction Recent studies have indicated that heterospecific tandems within Odonata are not unusual (BICK & BICK, 1981; UTZERI & BELFIORE, 1990; CORBET, 1999). However, the difficulty in detection of females in heterospecific pairs for some genera restricts the number of records of such pairs (BICK & BICK, 1981; CORBET, 1999). Thus, it is probable that there are unreported or unpublished records of heterospecific pairs among dragonflies, and it is possible that the total number of all records is greater than the amount of available data. Heterosexual heterospecific tandems were recorded and observed more often in Anisoptera than Zygoptera, and most of the known records showed that heterospecific pairs consist of individuals of the same genus (CORBET, 1999). Aeshnidae from Anisoptera is one of the families for which heterospecific pairings were recorded, and Sympetrum and Gomphus are Anisopteran genera including the highest record numbers of mixed pairings (BICK & BICK, 1981; CORBET, 1999).
    [Show full text]
  • Dragonfly Report
    The Dragonflies & Damselflies of Rye Harbour Rye Harbour Fauna and Flora Volume 4 By Chris Bentley Published by East Sussex County Council and The Friends of Rye Harbour Nature Reserve Rye Harbour Nature Reserve 2 Watch Cottages Winchelsea, East Sussex TN36 4LU [email protected] www.WildRye.info February 2010 RYE HARBOUR FLORA & FAUNA Dragonflies & Damselflies RYE HARBOUR FLORA & FAUNA Dragonflies & Damselflies Introduction In 1965 East Sussex County Council published a report on the future development of the East Sussex Coast which included proposals to encourage the establishment of a Nature Reserve over the whole of the 728 hectares (c.1,800 acres) of the Rye Harbour Site This report should of Special Scientific Interest (SSSI). In 1970 the shingle beach, now owned by the Environment Agency , was declared a Local Nature print out in booklet Reserve (LNR) by the County Council, who also appointed a form so that you can Management Committee to administer the LNR. This was the beginning of Rye Harbour Local Nature Reserve. Since then further make your own. land has been added by agreement with neighbouring landowners and the County Council and by purchase of land by the Sussex Wildlife Trust with the help of the Friends of Rye Harbour Print on both sides of Nature Reserve . It is hoped that further areas of the SSSI will become part of the Nature Reserve and so this report covers the 14 sheets of A4 paper. whole area. The present extent of the Nature Reserve includes the seaward shingle ridges extending inland to, and including, the gravel pit known as Ternery Pool and the nearby excavation known as the Quarry (Beach Reserve), a large gravel pit (Castle Water), a large area of meadow land and shingle ridges around Camber Castle (Castle Farm) and a small area of saltmarsh fringing the western bank of the River Rother between Rye Harbour and the river mouth.
    [Show full text]
  • 2011 Biodiversity Snapshot. Isle of Man Appendices
    UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. Isle of Man: Appendices. Author: Elizabeth Charter Principal Biodiversity Officer (Strategy and Advocacy). Department of Environment, Food and Agriculture, Isle of man. More information available at: www.gov.im/defa/ This section includes a series of appendices that provide additional information relating to that provided in the Isle of Man chapter of the publication: UK Overseas Territories and Crown Dependencies: 2011 Biodiversity snapshot. All information relating to the Isle or Man is available at http://jncc.defra.gov.uk/page-5819 The entire publication is available for download at http://jncc.defra.gov.uk/page-5821 1 Table of Contents Appendix 1: Multilateral Environmental Agreements ..................................................................... 3 Appendix 2 National Wildife Legislation ......................................................................................... 5 Appendix 3: Protected Areas .......................................................................................................... 6 Appendix 4: Institutional Arrangements ........................................................................................ 10 Appendix 5: Research priorities .................................................................................................... 13 Appendix 6 Ecosystem/habitats ................................................................................................... 14 Appendix 7: Species ....................................................................................................................
    [Show full text]
  • British Dragonfly Society Sussex Group Newsletter Winter! 2019
    British Dragonfly Society Sussex Group Newsletter Winter! 2019 No 43 Expect the Unexpected By John Arnott Chichester Natural History Society members have been monitoring dragonflies at RSPB Medmerry since summer 2014, soon after it was flooded in autumn 2013. As many people know, this newly created wetland complex was designed primarily as a coastal flood mitigation system but with many natural habitat features built in. On the western edge is a complex of runoff channels with many bends and interconnected pools, all providing ideal habitat for dragonflies. Six years on and the channel system has become filled with a lush growth of aquatic plants domi- nated by tall emergents such as Branched Bur-reed Sparganium erectum, Reed Sweet-grass Glyceria maxima and Water-plantain Alisma plantago-aquatica together with submerged aquatics, in particu- lar, dense mats of Spiked Water-milfoil Myriophyllum spicatum. The management priority here is for Water Vole Arvicola amphibius so good aquatic plant growth is encouraged. too I’ve always thought that Med- merry would be in the front line for migrant species of dragonfly from the Continent. We rec- orded our first sightings of Small Red-eyed Damselfly Eryth- romma viridulum on 1st August 2014 but since then it has been quiet as far as migrant dragon- flies are concerned. Sussex Dragonfly Society Newsletter Continued ... I’ve always been a keen follower of Adrian Parr’s Migrant Dragonflies Facebook page and before every survey I spend time going through his books to remind myself what migrants to look out for. On 5th July this year we arrived at the RSPB Medmerry car park at Earnley in good time to meet other members of Chichester NHS and have lunch before our first dragonfly survey of the season.
    [Show full text]
  • The Odonata of Wadi Isser (Kabylia, Algeria): Status and Environmental Determinants of Their Distribution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by I-Revues Revue d’Ecologie (Terre et Vie), Vol. 70 (3), 2015 : 248-260 THE ODONATA OF WADI ISSER (KABYLIA, ALGERIA): STATUS AND ENVIRONMENTAL DETERMINANTS OF THEIR DISTRIBUTION Djaouida BOUCHELOUCHE1, Ourida KHERBOUCHE-ABROUS1, Mohamed MEBARKI1, Abdeslem ARAB1 & Boudjéma SAMRAOUI2 1 Laboratory of Dynamics and Biodiversity, FSB, USTHB, LP 32 El Alia, Bab Ezzouar. Algiers-Algeria. E-mails: [email protected] ; [email protected] ; [email protected] ; [email protected] 2 Laboratoire de Recherche et de Conservation des Zones Humides, University of Guelma, Algeria & Center of Excellence for Research in Biodiversity, King Saud University, Saudi Arabia. E-mail : [email protected] RÉSUMÉ.— Les Odonates de l’Oued Isser (Kabylie, Algérie) : statut et déterminants environnementaux de leur distribution.— Une étude odonatologique a été réalisée durant six mois successifs, de mai à octobre 2013 à l’Oued Isser, situé dans le nord centre algérien, une région pratiquement inexplorée auparavant. Un total de 19 espèces d’Odonates a été enregistré durant l’échantillonnage mensuel de six stations. Il est à noter la présence de Lestes numidicus et de Platycnemis subdilatata, endémiques du Maghreb. Nos résultats étendent considérablement vers l’ouest la distribution connue de L. numidicus, ayant un statut « données insuffisantes » (DD) sur la liste rouge de l’UICN. À la lumière de la présente étude, on ne propose aucun changement de la classification de la Liste Rouge de l’IUCN à l’exception de L. numidicus qui devrait être classé comme quasi menacé (NT), dans l’attente de nouvelles prospections.
    [Show full text]
  • Light-Colored Butterflies and Dragonflies Thriving As European Climate Warms 27 May 2014
    Light-colored butterflies and dragonflies thriving as European climate warms 27 May 2014 (Pieris mannii), have dispersed to Germany during the last ten years and are still continuing their northward shift. As with lizards and snakes, the colour of an insect's body plays a key role in how they absorb energy from the sun, and is crucial in fuelling their flight as well as regulating their body temperature. Credit: Heiner Blischke Butterflies and dragonflies with lighter colours are out-competing darker-coloured insects in the face of climate change. In a new study published in Nature Communications, scientists from Imperial College London, Philipps-University Marburg and University of Copenhagen have shown that as the climate warms across Europe, communities of The map shows the mean color lightness of dragonflies in Europe with assemblages dominated by light-colored butterflies and dragonflies consist of more lighter species in the south to assemblages dominated by dark- coloured species. Darker coloured species are colored species in the north. This distinct color pattern retreating northwards to cooler areas, but lighter across Europe was unknown until now. Credit: Zeuss et coloured species are also moving their al. 2014. geographical range north as Europe gets warmer. For example, several Mediterranean dragonfly species have expanded their northern range and Dark-coloured insects are able to absorb more immigrated to Germany, such as the Southern sunlight than light-coloured insects, in order to Migrant Hawker (Aeshna affinis), the Scarlet Darter increase their body temperature, and are more (Crocothemis erythraea) and the Dainty Damselfly likely to be found in cooler climates.
    [Show full text]
  • Odonata Colour: More Than Meets the Eye?
    International Journal of Odonatology Vol. 14, No. 3, September 2011, 281–289 Odonata colour: more than meets the eye? Wendy E. Harrisa, Dan W. Formanb*, Roy D. Battellb, Marie T. R. Battellb, Alan K. Nelsonc and Paul F. Braina aConservation Ecology Research Team Swansea (CERTS), Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, UK; bPineham House, Haversham, Milton Keynes, Buckinghamshire, MK19 7DP, UK; cBritish Dragonfly Society Buckinghamshire Dragonfly Recorder (Received 11 February 2011; final version received 13 September 2011) Interpretations of behavioural visual cues, based on human perception of colour, may mislead because of the difference in our visual range compared to other animals. Investigations into ultraviolet (UV) reflectance have shown that this can be an important mode of communication in many animals. The present study focused on 10 species of British Odonata. Digital photography was used to capture images of UV reflectance of the body using a Schott UV pass filter to eliminate all other portions of the spectrum. Percentage cover of UV reflectance was determined and all but one of the 10 species sampled were found to reflect UV in one or both sexes. Most of the reflectance tended to occur on the ventral surface. Patterns of UV reflectance varied among species suggesting a variety of possible functions that are briefly discussed. A potential evolutionary mechanism for the development of UV reflectance in Odonata is proposed. Keywords: Odonata; dragonfly; UV; colour; vision; signal of fitness; mistaken identity Introduction When assessing relationships between colour and behaviour in animals, human visual pigments have some disadvantages. The human lens and cornea strongly absorb wavelengths in the ultra- violet (UV) region (10–400 nm), preventing these wavelengths from reaching the retina, while the retina itself lacks any photoreceptor sensitive to UV (Tovée, 1995).
    [Show full text]
  • IDF-Report 28 (2010)
    International Dragonfly Fund - Report 28 (2010): 1-72 1 The Odonata of Kyrgyzstan, part I - Critical national checklist, annotated list of records and collected data of the summer half-years 2008 and 2009 Schröter, Asmus* *Harustie 7F 79, 00980 Helsinki/Finland Email: [email protected]; [email protected] This work is dedicated to the worldwide unique Kyrgyz Walnut foressts of the Jalalabad province – may the people of Kyrgyzstan increasingly and in time recognize the invaluable worth of this severely threatened and vanishing green oasis of life. Picture1:MaleofCordulegaster coronata. “Ütsch Tschoku”, southern foothills of Bau- bash-Ata range, Jalalabad Oblast 2400m a.s.l., 2008-06-28. 2 Odonata Fauna of Kyrgyzstan Summary Based on the results of fieldwork and collecting in 2008 and 2009 and the evaluation of literature an updated national checklist of the Odonata of Kyr- gyzstan is presented. The list comprises a total of 63 species, whereas 55 spe- cies were encountered in the field by the author, including five new for the country: Aeshna serrata, Onychogomphus lefebvrii, Orthetrum sabina, Croco- themis servilia, Selysiothemis nigra. 826 specimens of 49 species have been collected (dep. in coll. A. Schröter). All 55 species recorded in 2008 and 2009 are listed and annotated. Moreover, the unclear or controversial taxonomical status of several species is briefly debated. Interesting ecological observations include the emergence of Libellula quadrimaculata from running water and cleptoparasitism by Ischnura forcipata in spider webs. 1. Introduction The Republic of Kyrgyzstan is the second smallest successor state of the five Central Asian Ex-Soviet Republics and covers an area of roughly 200.000 square kilometres.
    [Show full text]
  • Trends in Occurrence of Thermophilous Dragonfly Species in North Rhine-Westphalia (NRW)
    A peer-reviewed open-access journal BioRisk 5:Trends 31–45 in(2010) occurrence of thermophilous dragonfl y species in North Rhine-Westphalia (NRW) 31 doi: 10.3897/biorisk.5.841 RESEARCH ARTICLE BioRisk http://biorisk-journal.com/ Trends in occurrence of thermophilous dragonfly species in North Rhine-Westphalia (NRW) Klaus-Jürgen Conze1, Nina Grönhagen2, Mathias Lohr3, Norbert Menke4 1 Arbeitskreis Libellen Nordrhein-Westfalen c/o, Listerstr. 13, D-45147 Essen 2 Ulricher Str. 36, D-59494 Soest 3 Fachgebiete Tierökologie und Landschaftsökologie, Fachhochschule Lippe und Höxter, An der Wil- helmshöhe 44, D-37671 Höxter 4 Stephanweg 15, D-48155 Münster Corresponding author: Klaus-Jürgen Conze ([email protected]) Academic editor: Jurgen Ott | Received 29 July 2010 | Accepted 12 August 2010 | Published 30 December 2010 Citation: Conze K-J, Grönhagen N, Lohr M, Menke N (2010) Trends in occurrence of thermophilous dragonfl y species in North Rhine-Westphalia (NRW). In: Ott J (Ed) (2010) Monitoring Climatic Change With Dragonfl ies. BioRisk 5: 31–45. doi: 10.3897/biorisk.5.841 Abstract Since 1996 the “Workgroup Odonata in North Rhine-Westphalia” (“AK Libellen NRW”) has built up a data base including about 150.000 data sets concerning the occurrence of dragonfl ies in North Rhine- Westphalia (NRW). Th is data confi rms an increase and spread of some thermophilous dragonfl y species in NRW, and the eff ects of climate change evidenced by an increasing average temperature, are considered to be important reasons for this process. Keywords dragonfl ies, climatic changes, North Rhine-Westfalia, monitoring, "Mediterranean species" The area Covering 34.100 km2 North Rhine-Westphalia (NRW) is one of the biggest federal states of Germany with the largest number of inhabitants (about 17 million people).
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Martin Lindeboom, Landhausstr. 10, D-72074 Tübingen, Germany. Tel. ++49 (0)7071 552928; E-mail: [email protected] and Martin Schorr, Schulstr. 7B D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: martinschorr @onlinehome.de Published in Rheinfelden, Germany and printed in Tübingen, Germany. ISSN 1438-0269 lues for pests are: 3.38, 0.92 (Nephotettix spp.), 6.28, 1997 1.00 (Nilaparvata lugens), 1.37, 0.72 (Cnaphalocrocis medinalis- Pyralidae), 2.42, 0.90 (Recilia dorsalis), 3.81, 0.97 (Sogatella furcifera), and for predators are: 4181. Haarstad, J. (1997): The dragonflies of selected 3.89, 0.98 (Cyrtorhinus sp.), 2.39, 0.85 (Anatrichus eastern Minnesota rivers. Report submitted to the Min- pygmaeus- Diptera), 2.02, 0.82 (Odonata), 1.65, 0.81 nesota Department of Natural Resources: 83 pp. (in (Casnoidea lividipennis.), 1.61, 0.64 (Authaor) (Paede- English). ["During the summer of 1992 I visited 25 rivers rus fuscipes), and 1.60, 0.69 (spiders). P(I) is signifi- and streams in eastern Minnesota collecting dragonfly cantly (P<0.001) affected by arthropod category and exuviae and adults. Streams visited in the Northeast growth stage of the crop. The observed P(I) indicated were the Gooseberry (1 site), Baptism (3 sites), Mani- high fits (most r2>0.90) to clumped- and Poisson-based tou (1 site), Temperance (4 sites), Cascade (2 sites), distribution models."] Address: Hassan, S.T.S., Jabatan Stony (1 site), Kawishiwi (1 site), and St.
    [Show full text]